123
Views
10
CrossRef citations to date
0
Altmetric
Review

Current challenges in treating MRSA: what are the options?

&
Pages 601-618 | Published online: 10 Jan 2014

References

  • Hawkey PM. Molecular epidemiology of clinically significant antibiotic resistance genes. Br. J. Pharmacol.153(Suppl. 1), S406–S413 (2008).
  • Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin. Infect. Dis.36(1), 53–59 (2003).
  • Naimi TS, LeDell KH, Como-Sabetti K et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA290(22), 2976–2984 (2003).
  • Udo EE, Pearman JW, Grubb WB. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J. Hosp. Infect.25(2), 97–108 (1993).
  • Gosbell IB, Mercer JL, Neville SA et al. Non-multiresistant and multiresistant methicillin-resistant Staphylococcus aureus in community-acquired infections. Med. J. Aust.174(12), 627–630 (2001).
  • Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus – Minnesota and North Dakota, 1997–1999. MMWR Morb. Mortal. Wkly Rep.48, 707–710 (1999).
  • Skiest DJ, Brown K, Cooper TW, Hoffman-Roberts H, Mussa HR, Elliott AC. Prospective comparison of methicillin-susceptible and methicillin-resistant community-associated Staphylococcus aureus infections in hospitalized patients. J. Infect.54(5), 427–434 (2007).
  • Herman RA, Kee VR, Moores KG, Ross MB. Etiology and treatment of community-associated methicillin-resistant Staphylococcus aureus. Am. J. Health Syst. Pharm.65(3), 219–225 (2008).
  • Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect. Dis.5(5), 275–286 (2005).
  • Kaplan SL, Hulten KG, Gonzalez BE et al. Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clin. Infect. Dis.40(12), 1785–1791 (2005).
  • Davis SL, Perri MB, Donabedian SM et al. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol.45(6), 1705–1711 (2007).
  • Millar BC, Prendergast BD, Moore JE. Community-associated MRSA (CA-MRSA): an emerging pathogen in infective endocarditis. J. Antimicrob. Chemother.61(1), 1–7 (2008).
  • Millar BC, Loughrey A, Elborn JS, Moore JE. Proposed definitions of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). J. Hosp. Infect.67(2), 109–113 (2007).
  • Maree CL, Daum RS, Boyle-Vavra S, Matayoshi K, Miller LG. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg. Infect. Dis.13(2), 236–242 (2007).
  • David MD, Kearns AM, Gossain S, Ganner M, Holmes A. Community-associated methicillin-resistant Staphylococcus aureus: nosocomial transmission in a neonatal unit. J. Hosp. Infect.64(3), 244–250 (2006).
  • Huijsdens XW, van Santen-Verheuvel MG, Spalburg E et al. Multiple cases of familial transmission of community-acquired methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol.44(8), 2994–2996 (2006).
  • Lee NE, Taylor MM, Bancroft E et al. Risk factors for community-associated methicillin-resistant Staphylococcus aureus skin infections among HIV-positive men who have sex with men. Clin. Infect. Dis.40(10), 1529–1534 (2005).
  • Fey PD, Said-Salim B, Rupp ME et al. Comparative molecular ana­lysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.47(1), 196–203 (2003).
  • Wang JL, Chen SY, Wang JT et al. Comparison of both clinical features and mortality risk associated with bacteremia due to community-acquired methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus. Clin. Infect. Dis.46(6), 799–806 (2008).
  • Chongtrakool P, Ito T, Ma XX et al. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob. Agents Chemother.50(3), 1001–1012 (2006).
  • Deurenberg RH, Vink C, Kalenic S, Friedrich AW, Bruggeman CA, Stobberingh EE. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect.13(3), 222–235 (2007).
  • Chung M, Dickinson G, de LH, Tomasz A. International clones of methicillin-resistant Staphylococcus aureus in two hospitals in Miami, Florida. J. Clin. Microbiol.42(2), 542–547 (2004).
  • Trindade PA, McCulloch JA, Oliveira GA, Mamizuka EM. Molecular techniques for MRSA typing: current issues and perspectives. Braz. J. Infect. Dis.7(1), 32–43 (2003).
  • de AT, Pacheco RL, Costa SF et al. Prevalence of SCCmec type IV in nosocomial bloodstream isolates of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol.43(7), 3435–3437 (2005).
  • Rossney AS, Shore AC, Morgan PM, Fitzgibbon MM, O’Connell B, Coleman DC. The emergence and importation of diverse genotypes of methicillin-resistant Staphylococcus aureus (MRSA) harboring the Panton–Valentine leukocidin gene (pvl) reveal that pvl is a poor marker for community-acquired MRSA strains in Ireland. J. Clin. Microbiol.45(8), 2554–2563 (2007).
  • Denis O, Deplano A, De Beenhouwer H et al. Polyclonal emergence and importation of community-acquired methicillin-resistant Staphylococcus aureus strains harbouring Panton–Valentine leucocidin genes in Belgium. J. Antimicrob. Chemother.56(6), 1103–1106 (2005).
  • Moroney SM, Heller LC, Arbuckle J, Talavera M, Widen RH. Staphylococcal cassette chromosome mec and Panton–Valentine leukocidin characterization of methicillin-resistant Staphylococcus aureus clones. J. Clin. Microbiol.45(3), 1019–1021 (2007).
  • Monecke S, Slickers P, Ellington MJ, Kearns AM, Ehricht R. High diversity of Panton–Valentine leukocidin-positive, methicillin-susceptible isolates of Staphylococcus aureus and implications for the evolution of community-associated methicillin-resistant S. aureus. Clin. Microbiol. Infect.13(12), 1157–1164 (2007).
  • Kennedy AD, Otto M, Braughton KR et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc. Natl Acad. Sci. USA105(4), 1327–1332 (2008).
  • Diep BA, Gill SR, Chang RF et al. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet367(9512), 731–739 (2006).
  • Diep BA, Otto M. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol.16(8), 361–369 (2008).
  • Diep BA, Stone GG, Basuino L et al. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J. Infect. Dis.197(11), 1523–1530 (2008).
  • Carleton HA, Diep BA, Charlebois ED, Sensabaugh GF, Perdreau-Remington F. Community-adapted methicillin-resistant Staphylococcus aureus (MRSA): population dynamics of an expanding community reservoir of MRSA. J. Infect. Dis.190(10), 1730–1738 (2004).
  • Fridkin SK, Hageman JC, Morrison M et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med.352(14), 1436–1444 (2005).
  • Diep BA, Chambers HF, Graber CJ et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann. Intern. Med.148(4), 249–257 (2008).
  • Boucher HW , Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis.46(Suppl. 5), S344–S349 (2008).
  • Miller LG , Diep BA. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis.46(5), 752–760 (2008).
  • Han LL, McDougal LK, Gorwitz RJ et al. High frequencies of clindamycin and tetracycline resistance in methicillin-resistant Staphylococcus aureus pulsed-field type USA300 isolates collected at a Boston ambulatory health center. J. Clin. Microbiol.45(4), 1350–1352 (2007).
  • Loeb M, Main C, Walker-Dilks C, Eady A. Antimicrobial drugs for treating methicillin-resistant Staphylococcus aureus colonization. Cochrane Database Syst. Rev. (4), CD003340 (2003).
  • Coia JE, Duckworth GJ, Edwards DI et al. Guidelines for the control and prevention of methicillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J. Hosp. Infect.63(Suppl. 1), S1–S44 (2006).
  • Hospital Ward Configuration. Determinants Influencing Single Room Provision. A Report for NHS Estates, England by the EU Health Property Network (2004).
  • Shinefield H, Black S, Fattom A et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N. Engl. J. Med.346(7), 491–496 (2002).
  • Stranger-Jones YK, Bae T, Schneewind O. Vaccine assembly from surface proteins of Staphylococcus aureus. Proc. Natl Acad. Sci. USA103(45), 16942–16947 (2006).
  • Shinefield HR. Use of a conjugate polysaccharide vaccine in the prevention of invasive staphylococcal disease: is an additional vaccine needed or possible? Vaccine24(Suppl. 2), S2–S9 (2006).
  • Kuklin NA, Clark DJ, Secore S et al. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect. Immun.74(4), 2215–2223 (2006).
  • Steinkraus G, White R, Friedrich L. Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05. J. Antimicrob. Chemother.60(4), 788–794 (2007).
  • Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch. Intern. Med.166(19), 2138–2144 (2006).
  • Reynolds R, Hope R and British Working Party on Bacteraemia Resistance Surveillance. Trends in resistance of Staphylococcus aureus from blood in the UK and Ireland 2001–2005, and activity of telavancin in 2005. Presented at: 46th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, CA, USA, 27–30 September 2006.
  • Brown DF, Edwards DI, Hawkey PM et al. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J. Antimicrob. Chemother.56(6), 1000–1018 (2005).
  • Appelbaum PC. Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents30(5), 398–408 (2007).
  • Neoh HM, Hori S, Komatsu M et al. Impact of reduced vancomycin susceptibility on the therapeutic outcome of MRSA bloodstream infections. Ann. Clin. Microbiol. Antimicrob.6, 13 (2007).
  • Rybak M, Chin J, Lau K, Sader H, Jones R. Increasing prevalence of glycopeptide hetero-resistant S. aureus from the Detroit metropolitan area over a 20-year period (1986–2006). Presented at: 17th European Congress of Clinical Microbiology and Infectious Diseases (ECSMID) and the 25th International Congress of Chemotherapy (ICC), Munich, Germany, 31 March–3 April 2007.
  • Deresinski S. Counterpoint: vancomycin and Staphylococcus aureus – an antibiotic enters obsolescence. Clin. Infect. Dis.44(12), 1543–1548 (2007).
  • Scheetz MH, Wunderink RG, Postelnick MJ, Noskin GA. Potential impact of vancomycin pulmonary distribution on treatment outcomes in patients with methicillin-resistant Staphylococcus aureus pneumonia. Pharmacotherapy26(4), 539–550 (2006).
  • Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin. Pharmacokinet.43(13), 925–942 (2004).
  • Ricard JD, Wolff M, Lacherade JC et al. Levels of vancomycin in cerebrospinal fluid of adult patients receiving adjunctive corticosteroids to treat pneumococcal meningitis: a prospective multicenter observational study. Clin. Infect. Dis.44(2), 250–255 (2007).
  • Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin. Infect. Dis.46(5), 668–674 (2008).
  • Gould IM. The problem with glycopeptides. Int. J. Antimicrob. Agents30(1), 1–3 (2007).
  • Weigel LM, Clewell DB, Gill SR et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science302(5650), 1569–1571 (2003).
  • Naimi TS, Anderson D, O’Boyle C et al. Vancomycin-intermediate Staphylococcus aureus with phenotypic susceptibility to methicillin in a patient with recurrent bacteremia. Clin. Infect. Dis.36(12), 1609–1612 (2003).
  • Maor Y, Rahav G, Belausov N, Ben-David D, Smollan G, Keller N. Prevalence and characteristics of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia in a tertiary care center. J. Clin. Microbiol.45(5), 1511–1514 (2007).
  • Jones RN. Microbiological features of vancomycin in the 21st Century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin. Infect. Dis.42(Suppl. 1), S13–S24 (2006).
  • Livermore DM. Linezolid in vitro: mechanism and antibacterial spectrum. J. Antimicrob. Chemother.51(Suppl. 2), ii9–ii16 (2003).
  • Wilcox MH. Efficacy of linezolid versus comparator therapies in Gram-positive infections. J. Antimicrob. Chemother.51(Suppl. 2), ii27–ii35 (2003).
  • Wunderink RG, Rello J, Cammarata SK, Croos-Dabrera RV, Kollef MH. Linezolid vs vancomycin: ana­lysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest124(5), 1789–1797 (2003).
  • Ferrara AM. Treatment of hospital-acquired pneumonia caused by methicillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents30(1), 19–24 (2007).
  • Pea F, Viale P. Pharmacodynamics of antibiotics to treat multidrug-resistant Gram-positive hospital infections. Expert Rev. Anti Infect. Ther.5(2), 255–270 (2007).
  • Huang YT, Hsiao CH, Liao CH, Lee CW, Hsueh PR. Bacteremia and infective endocarditis caused by a non-daptomycin-susceptible, vancomycin-intermediate, and methicillin-resistant Staphylococcus aureus strain in Taiwan. J. Clin. Microbiol.46(3), 1132–1136 (2008).
  • Schwalm JD, El-Helou P, Lee CH. Clinical outcome with oral linezolid and rifampin following recurrent methicillin-resistant Staphylococcus aureus bacteremia despite prolonged vancomycin treatment. Can. J. Infect. Dis.15(2), 97–100 (2004).
  • Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J. Antimicrob. Chemother.56(5), 923–929 (2005).
  • Macgowan AP. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J. Antimicrob. Chemother.51(Suppl. 2), ii17–ii25 (2003).
  • Maure B, Martinez-Vazquez C, Perez-Veloso M, Rodriguez Fernandez MJ, Sopena B. Linezolid in postneurosurgical infections. Infection36(1), 82–83 (2008).
  • Chesi G, Colli A, Mestres CA, Gambarati G, Boni F, Gherli T. Multiresistant-MRSA tricuspid valve infective endocarditis with ancient osteomyelitis locus. BMC Infect. Dis.6, 124 (2006).
  • Nathani N, Iles P, Elliott TS. Successful treatment of MRSA native valve endocarditis with oral linezolid therapy: a case report. J. Infect.51(4), E213–E215 (2005).
  • Falagas ME, Manta KG, Ntziora F, Vardakas KZ. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J. Antimicrob. Chemother.58(2), 273–280 (2006).
  • Munoz P, Rodriguez-Creixems M, Moreno M, Marin M, Ramallo V, Bouza E. Linezolid therapy for infective endocarditis. Clin. Microbiol. Infect.13(2), 211–215 (2007).
  • Pfizer. Zyvox (Linezolid) Datasheet (2007).
  • French G. Safety and tolerability of linezolid. J. Antimicrob. Chemother.51(Suppl. 2), ii45–ii53 (2003).
  • Pan A, Lorenzotti S, Zoncada A. Registered and investigational drugs for the treatment of methicillin-resistant Staphylococcus aureus infection. Recent Patents Anti-Infect. Drug Disc.3(1), 10–33 (2008).
  • Hachem RY, Hicks K, Huen A, Raad I. Myelosuppression and serotonin syndrome associated with concurrent use of linezolid and selective serotonin reuptake inhibitors in bone marrow transplant recipients. Clin. Infect. Dis.37(1), E8–E11 (2003).
  • Anstead GM, Quinones-Nazario G, Lewis JS. Treatment of infections caused by resistant Staphylococcus aureus. Methods Mol. Biol.391, 227–258 (2007).
  • Lentino JR, Narita M, Yu VL. New antimicrobial agents as therapy for resistant Gram-positive cocci. Eur. J. Clin. Microbiol. Infect. Dis.27(1), 3–15 (2008).
  • Aksoy DY , Unal S. New antimicrobial agents for the treatment of Gram-positive bacterial infections. Clin. Microbiol. Infect.14(5), 411–420 (2008).
  • Micek ST. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis.45(Suppl. 3), S184–S190 (2007).
  • Kainer MA, Devasia RA, Jones TF et al. Response to emerging infection leading to outbreak of linezolid-resistant enterococci. Emerg. Infect. Dis.13(7), 1024–1030 (2007).
  • Marra AR, Major Y, Edmond MB. Central venous catheter colonization by linezolid-resistant, vancomycin-susceptible Enterococcus faecalis. J. Clin. Microbiol.44(5), 1915–1916 (2006).
  • Woodford N. Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin. Microbiol. Infect.11(Suppl. 3), S2–S21 (2005).
  • Wilson P, Andrews JA, Charlesworth R et al. Linezolid resistance in clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother.51(1), 186–188 (2003).
  • Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob. Agents Chemother.52(6), 2244–2246 (2008).
  • King Pharmaceuticals. Synercid Datasheet (2003).
  • Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn. Microbiol. Infect. Dis.58(2), 163–170 (2007).
  • Joint Formulary Committee. British National Formulary (BNF) (55th Edition). Martin J (Ed.). British Medical Association and Royal Pharmaceutical Society of Great Britain, London, UK 51–57 (2008)
  • Tedesco KL, Rybak MJ. Daptomycin. Pharmacotherapy24(1), 41–57 (2004).
  • Shah PM. The need for new therapeutic agents: what is the pipeline? Clin. Microbiol. Infect.11(Suppl. 3), S36–S42 (2005).
  • Cha R, Grucz RG Jr, Rybak MJ. Daptomycin dose–effect relationship against resistant Gram-positive organisms. Antimicrob. Agents Chemother.47(5), 1598–1603 (2003).
  • Cubist Pharmaceuticals. Daptomycin (Cubicin) Datasheet (2007).
  • Denis O, Deplano A, Nonhoff C et al.In vitro activities of ceftobiprole, tigecycline, daptomycin, and 19 other antimicrobials against methicillin-resistant Staphylococcus aureus strains from a national survey of Belgian hospitals. Antimicrob. Agents Chemother.50(8), 2680–2685 (2006).
  • Falagas ME, Giannopoulou KP, Ntziora F, Papagelopoulos PJ. Daptomycin for treatment of patients with bone and joint infections: a systematic review of the clinical evidence. Int. J. Antimicrob. Agents30(3), 202–209 (2007).
  • Eisenstein BI. Treatment challenges in the management of complicated skin and soft-tissue infections. Clin. Microbiol. Infect.14(Suppl. 2), S17–S25 (2008).
  • Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis.38(12), 1673–1681 (2004).
  • Lipsky BA , Stoutenburgh U. Daptomycin for treating infected diabetic foot ulcers: evidence from a randomized, controlled trial comparing daptomycin with vancomycin or semi-synthetic penicillins for complicated skin and skin-structure infections. J. Antimicrob. Chemother.55(2), 240–245 (2005).
  • Fowler VG, Jr., Boucher HW, Corey GR et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med.355(7), 653–665 (2006).
  • Falagas ME, Giannopoulou KP, Ntziora F, Vardakas KZ. Daptomycin for endocarditis and/or bacteraemia: a systematic review of the experimental and clinical evidence. J. Antimicrob. Chemother.60(1), 7–19 (2007).
  • Skiest DJ. Treatment failure resulting from resistance of Staphylococcus aureus to daptomycin. J. Clin. Microbiol.44(2), 655–656 (2006).
  • Jones T, Yeaman MR, Sakoulas G et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob. Agents Chemother.52(1), 269–278 (2008).
  • Silverman JA, Mortin LI, Vanpraagh AD, Li T, Alder J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J. Infect. Dis.191(12), 2149–2152 (2005).
  • Finney MS, Crank CW, Segreti J. Use of daptomycin to treat drug-resistant Gram-positive bone and joint infections. Curr. Med. Res. Opin.21(12), 1923–1926 (2005).
  • Sakoulas G, Alder J, Thauvin-Eliopoulos C, Moellering RC Jr, Eliopoulos GM. Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob. Agents Chemother.50(4), 1581–1585 (2006).
  • Wootton M, Macgowan AP, Walsh TR. Comparative bactericidal activities of daptomycin and vancomycin against glycopeptide-intermediate Staphylococcus aureus (GISA) and heterogeneous GISA isolates. Antimicrob. Agents Chemother.50(12), 4195–4197 (2006).
  • Cui L, Tominaga E, Neoh HM, Hiramatsu K. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother.50(3), 1079–1082 (2006).
  • Fluit AC, Florijn A, Verhoef J, Milatovic D. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob. Agents Chemother.49(4), 1636–1638 (2005).
  • Livermore DM. Tigecycline: what is it, and where should it be used? J. Antimicrob. Chemother.56(4), 611–614 (2005).
  • Pankey GA. Tigecycline. J. Antimicrob. Chemother.56(3), 470–480 (2005).
  • Pankey GA, Steele RW. Tigecycline: a single antibiotic for polymicrobial infections. Pediatr. Infect. Dis. J.26(1), 77–78 (2007).
  • Ruzin A, Keeney D, Bradford PA. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob. Agents Chemother.49(2), 791–793 (2005).
  • Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother.47(3), 972–978 (2003).
  • Hawkey P, Finch R. Tigecycline: in-vitro performance as a predictor of clinical efficacy. Clin. Microbiol. Infect.13(4), 354–362 (2007).
  • Al-Tatari H, Abdel-Haq N, Chearskul P, Asmar B. Antibiotics for treatment of resistant Gram-positive coccal infections. Indian J. Pediatr.73(4), 323–334 (2006).
  • Oliva ME, Rekha A, Yellin A et al. A multicenter trial of the efficacy and safety of tigecycline versus imipenem/cilastatin in patients with complicated intra-abdominal infections (Study ID Numbers: 3074A1–301-WW; ClinicalTrials.gov Identifier: NCT00081744). BMC Infect. Dis.5, 88 (2005).
  • Fomin P, Beuran M, Gradauskas A et al. Tigecycline is efficacious in the treatment of complicated intra-abdominal infections. Int. J. Surg.3(1), 35–47 (2005).
  • Sacchidanand S, Penn RL, Embil JM et al. Efficacy and safety of tigecycline monotherapy compared with vancomycin plus aztreonam in patients with complicated skin and skin structure infections: results from a Phase 3, randomized, double-blind trial. Int. J. Infect. Dis.9(5), 251–261 (2005).
  • Breedt J, Teras J, Gardovskis J et al. Safety and efficacy of tigecycline in treatment of skin and skin structure infections: results of a double-blind Phase 3 comparison study with vancomycin–aztreonam. Antimicrob. Agents Chemother.49(11), 4658–4666 (2005).
  • Maroko R. Results of Phase 3 study comparing a tigecycline (TGC) regimen with an imipenem/cilastatin (IMI) regimen in treatment of patients (pts) with hospital-acquired pneumonia (HAP). Presented at: 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, USA, 17–20 September 2007.
  • Vouillamoz J, Moreillon P, Giddey M, Entenza JM. In vitro activities of tigecycline combined with other antimicrobials against multiresistant Gram-positive and Gram-negative pathogens. J. Antimicrob. Chemother.61(2), 371–374 (2008).
  • Noel GJ. Clinical profile of ceftobiprole, a novel β-lactam antibiotic. Clin. Microbiol. Infect.13(Suppl. 2), S25–S29 (2007).
  • Chambers HF. Ceftobiprole: in-vivo profile of a bactericidal cephalosporin. Clin. Microbiol. Infect.12(Suppl. 2), S17–S22 (2006).
  • Bogdanovich T, Ednie LM, Shapiro S, Appelbaum PC. Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin. Antimicrob. Agents Chemother.49(10), 4210–4219 (2005).
  • Lodise TP Jr, Pypstra R, Kahn JB et al. Probability of target attainment for ceftobiprole as derived from a population pharmacokinetic ana­lysis of 150 subjects. Antimicrob. Agents Chemother.51(7), 2378–2387 (2007).
  • Lodise TP, Patel N, Renaud-Mutart A, Gorodecky E, Fritsche TR, Jones RN. Pharmacokinetic and pharmacodynamic profile of ceftobiprole.Diagn. Microbiol. Infect. Dis.61(1), 96–102 (2008).
  • Murthy B, Schmitt-Hoffmann A. Pharmacokinetics and pharmacodynamics of ceftobiprole, an anti-MRSA cephalosporin with broad-spectrum activity. Clin. Pharmacokinet.47(1), 21–33 (2008).
  • Appelbaum PC. MRSA–the tip of the iceberg. Clin. Microbiol. Infect.12(Suppl. 2), S3–S10 (2006).
  • Jones ME. In-vitro profile of a new β-lactam, ceftobiprole, with activity against methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect.13(Suppl. 2), S17–S24 (2007).
  • Livermore DM. Can β-lactams be re-engineered to beat MRSA? Clin. Microbiol. Infect.12(Suppl. 2), S11–S16 (2006).
  • Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin. Infect. Dis.46(5), 647–655 (2008).
  • Noel GJ, Strauss RS, Amsler K, Heep M, Pypstra R, Solomkin JS. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by Gram-positive bacteria. Antimicrob. Agents Chemother.52(1), 37–44 (2008).
  • Mushtaq S, Warner M, Ge Y, Kaniga K, Livermore DM. In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes. J. Antimicrob. Chemother.60(2), 300–311 (2007).
  • Sader HS, Fritsche TR, Jones RN. Antimicrobial activities of ceftaroline and ME1036 tested against clinical strains of community-acquired methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.52(3), 1153–1155 (2008).
  • Sader HS, Fritsche TR, Kaniga K, Ge Y, Jones RN. Antimicrobial activity and spectrum of PPI-0903M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob. Agents Chemother.49(8), 3501–3512 (2005).
  • Jacqueline C, Caillon J, Le M, V et al.In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate Staphylococcus aureus in a rabbit endocarditis model. Antimicrob. Agents Chemother.51(9), 3397–3400 (2007).
  • Parish D, Scheinfeld N. Ceftaroline fosamil, a cephalosporin derivative for the potential treatment of MRSA infection. Curr. Opin. Investig. Drugs9(2), 201–209 (2008).
  • Talbot GH, Thye D, Das A, Ge Y. Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob. Agents Chemother.51(10), 3612–3616 (2007).
  • Morrissey I, Ge Y, Janes R. The activity of ceftaroline against community-acquired pneumonia (CAP) bloodstream isolates. . presented at: 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, Il, USA, 17-20 Sepember 2007 (Poster E-281).
  • Andes D , Craig WA. In vivo pharmacodynamic activity of the glycopeptide dalbavancin. Antimicrob. Agents Chemother.51(5), 1633–1642 (2007).
  • Leighton A, Gottlieb AB, Dorr MB et al. Tolerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob. Agents Chemother.48(3), 940–945 (2004).
  • Billeter M, Zervos MJ, Chen AY, Dalovisio JR, Kurukularatne C. Dalbavancin: a novel once-weekly lipoglycopeptide antibiotic. Clin. Infect. Dis.46(4), 577–583 (2008).
  • Decousser JW, Bourgeois-Nicolaos N, Doucet-Populaire F. Dalbavancin, a long-acting lipoglycopeptide for the treatment of multidrug-resistant Gram-positive bacteria. Expert Rev. Anti Infect. Ther.5(4), 557–571 (2007).
  • Mushtaq S, Warner M, Johnson AP, Livermore DM. Activity of dalbavancin against staphylococci and streptococci, assessed by BSAC and NCCLS agar dilution methods. J. Antimicrob. Chemother.54(3), 617–620 (2004).
  • Jauregui LE, Babazadeh S, Seltzer E et al. Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin. Infect. Dis.41(10), 1407–1415 (2005).
  • Raad I, Darouiche R, Vazquez J et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by Gram-positive pathogens. Clin. Infect. Dis.40(3), 374–380 (2005).
  • Poulakou G, Giamarellou H. Oritavancin: a new promising agent in the treatment of infections due to Gram-positive pathogens. Expert Opin. Investig. Drugs17(2), 225–243 (2008).
  • Bush K, Macielag M, Weidner-Wells M. Taking inventory: antibacterial agents currently at or beyond Phase 1. Curr. Opin. Microbiol.7(5), 466–476 (2004).
  • Bhavnani SM, Passarell JA, Owen JS, Loutit JS, Porter SB, Ambrose PG. Pharmacokinetic–pharmacodynamic relationships describing the efficacy of oritavancin in patients with Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother.50(3), 994–1000 (2006).
  • Bhavnani SM, Owen JS, Loutit JS, Porter SB, Ambrose PG. Pharmacokinetics, safety, and tolerability of ascending single intravenous doses of oritavancin administered to healthy human subjects. Diagn. Microbiol. Infect. Dis.50(2), 95–102 (2004).
  • Fetterly GJ, Ong CM, Bhavnani SM et al. Pharmacokinetics of oritavancin in plasma and skin blister fluid following administration of a 200-milligram dose for 3 days or a single 800-milligram dose. Antimicrob. Agents Chemother.49(1), 148–152 (2005).
  • Boylan CJ, Campanale K, Iversen PW, Phillips DL, Zeckel ML, Parr TR Jr. Pharmacodynamics of oritavancin (LY333328) in a neutropenic-mouse thigh model of Staphylococcus aureus infection. Antimicrob. Agents Chemother.47(5), 1700–1706 (2003).
  • Loutit JS, O’Riordan W, San Juan J et al. Phase 2 trial comparing four regimens of oritavancin vs comparator in the treatment of patients with S. aureus bacteraemia. Clin. Microbiol. Infect.10(Suppl. 3), S122 (2008)
  • Wasilewski MM, Disch D, McGill JM, Harris HW, O’Riordan W, Zeckel ML. Equivalency of shorter course therapy with oritavancin compared with vancomycin/cephalexin in complicated skin/skin structure infections. Presented at: 41st Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA, 16–19 December 2001.
  • Giamarellou H, O’Riordan W, Harris H, Porter S, Loutit J. Phase III trial comparing 3–7 days of oritavancin versus 10–14 days of vancomycin/cephalexin in the treatment of patients with complicated skin/skin structure infections (cSSSI). Presented at: 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, USA, 14–17 September 2003.
  • Kanafani ZA. Telavancin: a new lipoglycopeptide with multiple mechanisms of action. Expert Rev. Anti Infect. Ther.4(5), 743–749 (2006).
  • Stryjewski ME, Graham DR, Wilson SE et al. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by Gram-positive organisms. Clin. Infect. Dis.46(11), 1683–1693 (2008).
  • Stryjewski ME, Chu VH, O’Riordan WD et al. Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by Gram-positive bacteria: FAST 2 study. Antimicrob. Agents Chemother.50(3), 862–867 (2006).
  • Stryjewski ME, O’Riordan WD, Lau WK et al. Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to Gram-positive bacteria. Clin. Infect. Dis.40(11), 1601–1607 (2005).
  • Hegde SS, Reyes N, Wiens T et al. Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against Gram-positive bacteria. Antimicrob. Agents Chemother.48(8), 3043–3050 (2004).
  • Schneider P, Hawser S, Islam K. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg. Med. Chem. Lett.13(23), 4217–4221 (2003).
  • Laue H, Weiss L, Bernardi A, Hawser S, Lociuro S, Islam K. In vitro activity of the novel diaminopyrimidine, iclaprim, in combination with folate inhibitors and other antimicrobials with different mechanisms of action. J. Antimicrob. Chemother.60(6), 1391–1394 (2007).
  • Kohlhoff SA, Sharma R. Iclaprim. Expert Opin. Investig. Drugs16(9), 1441–1448 (2007).
  • Peppard WJ, Schuenke CD. Iclaprim, a diaminopyrimidine dihydrofolate reductase inhibitor for the potential treatment of antibiotic-resistant staphylococcal infections. Curr. Opin. Investig. Drugs9(2), 210–225 (2008).
  • Hoellman DB, Lin G, Ednie LM, Rattan A, Jacobs MR, Appelbaum PC. Antipneumococcal and antistaphylococcal activities of ranbezolid (RBX 7644), a new oxazolidinone, compared with those of other agents. Antimicrob. Agents Chemother.47(3), 1148–1150 (2003).
  • Ednie LM, Rattan A, Jacobs MR, Appelbaum PC. Antianaerobe activity of RBX 7644 (ranbezolid), a new oxazolidinone, compared with those of eight other agents. Antimicrob. Agents Chemother.47(3), 1143–1147 (2003).
  • Bozdogan B, Appelbaum PC. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents23(2), 113–119 (2004).
  • Mathur T, Bhateja P, Pandya M, Fatma T, Rattan A. In vitro activity of RBx 7644 (ranbezolid) on biofilm producing bacteria. Int. J. Antimicrob. Agents24(4), 369–373 (2004).
  • Macgowan AP, Bowker KE, Noel AR. Pharmacodynamics of the antibacterial effect and emergence of resistance to tomopenem, formerly RO4908463/CS-023, in an in vitro pharmacokinetic model of Staphylococcus aureus infection. Antimicrob. Agents Chemother.52(4), 1401–1406 (2008).
  • Thomson KS, Moland ES. CS-023 (R-115685), a novel carbapenem with enhanced in vitro activity against oxacillin-resistant staphylococci and Pseudomonas aeruginosa. J. Antimicrob. Chemother.54(2), 557–562 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.