230
Views
43
CrossRef citations to date
0
Altmetric
Review

Antimicrobial-resistant Streptococcus pneumoniae: trends and management

Pages 619-635 | Published online: 10 Jan 2014

References

  • Barnett ED, Klein JO. The problem of resistant bacteria for the management of acute otitis media. Pediatr. Clin. North Am.42(3), 509–517 (1995).
  • Jones ME, Draghi DC, Karlowsky JA, Sahm DF, Bradley JS. Prevalence of antimicrobial resistance in bacteria isolated from central nervous system specimens as reported by U.S. hospital laboratories from 2000 to 2002. Ann. Clin. Microbiol. Antimicrob.3(1), 3 (2004).
  • Centers for Disease Control and Prevention. Defining the public health impact of drug-resistant Streptococcus pneumoniae: report of a working group. MMWR Recomm. Rep.45(RR-1 Suppl.), 1–20 (1996).
  • Centers for Disease Control and Prevention. Epidemiology & Prevention of Vaccine-Preventable Diseases (9th Edition). Atkinson W, Hamborsky J, Wolfe S (Eds). Public Health Foundation, Washington, DC, USA (2006).
  • Robinson KA, Baughman W, Rothrock G et al. Epidemiology of invasive Streptococcus pneumoniae infections in the United States, 1995–1998: opportunities for prevention in the conjugate vaccine era. JAMA285(13), 1729–1735 (2001).
  • Tsai CJ, Griffin MR, Pekka Nuorti J, Grijalva CG. Changing epidemiology of pneumococcal meningitis after the introduction of pneumococcal conjugate vaccine in the United States. Clin. Infect. Dis.46(11), 1664–1672 (2008).
  • Park IH, Pritchard DG, Cartee R et al. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J. Clin. Microbiol.45(4), 1225–1233 (2007).
  • Park IH, Park S, Hollingshead SK, Nahm MH. Genetic basis for the new pneumococcal serotype, 6C. Infect. Immun.75(9), 4482–4489 (2007).
  • Vives M, Garcia ME, Saenz P et al. Nasopharyngeal colonization in Costa Rican children during the first year of life. Pediatr. Infect. Dis. J.16(9), 852–858 (1997).
  • Ekdahl K, Ahlinder I, Hansson HB et al. Duration of nasopharyngeal carriage of penicillin-resistant Streptococcus pneumoniae: experiences from the South Swedish Pneumococcal Intervention Project. Clin. Infect. Dis.25(5), 1113–1117 (1997).
  • Coles CL, Kanungo R, Rahmathullah L et al. Pneumococcal nasopharyngeal colonization in young South Indian infants. Pediatr. Infect. Dis. J.20(3), 289–295 (2001).
  • Hendley JO, Sande MA, Stewart PM, Gwaltney JM Jr. Spread of Streptococcus pneumoniae in families. I. Carriage rates and distribution of types. J. Infect. Dis.132(1), 55–61 (1975).
  • Leino T, Auranen K, Jokinen J et al. Pneumococcal carriage in children during their first two years: important role of family exposure. Pediatr. Infect. Dis. J.20(11), 1022–1027 (2001).
  • Lopez B, Cima MD, Vazquez F et al. Epidemiological study of Streptococcus pneumoniae carriers in healthy primary-school children. Eur. J. Clin. Microbiol. Infect. Dis.18(11), 771–776 (1999).
  • Schuchat A, Hilger T, Zell E et al. Active bacterial core surveillance of the emerging infections program network. Emerg. Infect. Dis.7(1), 92–99 (2001).
  • Hausdorff WP, Yothers G, Dagan R et al. Multinational study of pneumococcal serotypes causing acute otitis media in children. Pediatr. Infect. Dis. J.21(11), 1008–1016 (2002).
  • Joloba ML, Windau A, Bajaksouzian S et al. Pneumococcal conjugate vaccine serotypes of Streptococcus pneumoniae isolates and the antimicrobial susceptibility of such isolates in children with otitis media. Clin. Infect. Dis.33(9), 1489–1494 (2001).
  • Centers for Disease Control and Prevention. Invasive pneumococcal disease in children 5 years after conjugate vaccine introduction – eight states, 1998–2005. MMWR Morb. Mortal. Wkly Rep.57(6), 144–148 (2008).
  • Maiden MC, Bygraves JA, Feil E et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA95(6), 3140–3145 (1998).
  • Obert CA, Gao G, Sublett J, Tuomanen EI, Orihuela CJ. Assessment of molecular typing methods to determine invasiveness and to differentiate clones of Streptococcus pneumoniae. Infect. Genet. Evol.7(6), 708–716 (2007).
  • Coffey TJ, Enright MC, Daniels M et al. Serotype 19A variants of the Spanish serotype 23F multiresistant clone of Streptococcus pneumoniae. Microb. Drug Resist.4(1), 51–55 (1998).
  • Bartlett J. Treatment of community-acquired pneumonia. Chemotherapy46(Suppl. 1), 24–31 (2000).
  • Bartlett JG, Mundy LM. Community-acquired pneumonia. N. Engl. J. Med.333(24), 1618–1624 (1995).
  • Mandell LA, Wunderink RG, Anzueto A et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis.44(Suppl. 2), S27–S72 (2007).
  • Bradley JS. Management of community-acquired pediatric pneumonia in an era of increasing antibiotic resistance and conjugate vaccines. Pediatr. Infect. Dis. J.21(6), 592–598; discussion 613–594 (2002).
  • Jacobs MR, Good CE, Beall B et al. Changes in serotypes and antimicrobial susceptibility of invasive Streptococcus pneumoniae strains in Cleveland: a quarter century of experience. J. Clin. Microbiol.46(3), 982–990 (2008).
  • Critchley IA, Jacobs MR, Brown SD et al. Prevalence of serotype 19A Streptococcus pneumoniae among isolates from U.S. children in 2005–2006 and activity of faropenem. Antimicrob. Agents Chemother.52(7), 2639–2643 (2008).
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility testing; Eighteenth Informational Supplement. M100-S18. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2008).
  • Anon JB, Jacobs MR, Poole MD et al. Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Otolaryngol. Head Neck Surg.130(Suppl. 1), 1–45 (2004).
  • McCaig LF, Hughes JM. Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA273(3), 214–219 (1995).
  • Fuller JD, Low DE. A review of Streptococcus pneumoniae infection treatment failures associated with fluoroquinolone resistance. Clin. Infect. Dis.41(1), 118–121 (2005).
  • Jacobs MR, Anon J, Appelbaum PC. Mechanisms of resistance among respiratory tract pathogens. Clin. Lab. Med.24(2), 419–453 (2004).
  • American Academy of Pediatrics and American Academy of Family Physicians. Diagnosis and management of acute otitis media. Pediatrics113(5), 1451–1465 (2004).
  • Jacobs MR, Dagan R. Antimicrobial resistance among pediatric respiratory tract infections: clinical challenges. Semin. Pediatr. Infect. Dis.15(1), 5–20 (2004).
  • Dowell SF, Butler JC, Giebink GS et al. Acute otitis media: management and surveillance in an era of pneumococcal resistance – a report from the Drug-Resistant Streptococcuspneumoniae Therapeutic Working Group. Pediatr. Infect. Dis. J.18(1), 1–9 (1999).
  • Benninger MS. Acute bacterial rhinosinusitis and otitis media: changes in pathogenicity following widespread use of pneumococcal conjugate vaccine. Otolaryngol. Head Neck Surg.138(3), 274–278 (2008).
  • Grijalva CG, Poehling KA, Nuorti JP et al. National impact of universal childhood immunization with pneumococcal conjugate vaccine on outpatient medical care visits in the United States. Pediatrics118(3), 865–873 (2006).
  • Zhou F, Shefer A, Kong Y, Nuorti JP. Trends in acute otitis media-related health care utilization by privately insured young children in the United States, 1997–2004. Pediatrics121(2), 253–260 (2008).
  • Sox CM, Finkelstein JA, Yin R, Kleinman K, Lieu TA. Trends in otitis media treatment failure and relapse. Pediatrics121(4), 674–679 (2008).
  • Noel GJ, Blumer JL, Pichichero ME et al. A randomized comparative study of levofloxacin versus amoxicillin/clavulanate for treatment of infants and young children with recurrent or persistent acute otitis media. Pediatr. Infect. Dis. J.27(6), 483–489 (2008).
  • Pichichero ME, Casey JR. Emergence of a multiresistant serotype 19A pneumococcal strain not included in the 7-valent conjugate vaccine as an otopathogen in children. JAMA298(15), 1772–1778 (2007).
  • Alpern ER, Alessandrini EA, McGowan KL, Bell LM, Shaw KN. Serotype prevalence of occult pneumococcal bacteremia. Pediatrics108(2), E23 (2001).
  • Centers for Disease Control and Prevention. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep.46(No. RR-8), 1–24 (1997).
  • Baddour LM, Yu VL, Klugman KP et al. Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia. Am. J. Respir. Crit. Care Med.170(4), 440–444 (2004).
  • Tunkel AR, Hartman BJ, Kaplan SL et al. Practice guidelines for the management of bacterial meningitis. Clin. Infect. Dis.39(9), 1267–1284 (2004).
  • Shields B. Prevnar (heptavalent pneumococcal conjugate vaccine): disease prevention in infants and children. J. Pediatr. Health Care15(4), 203–208 (2001).
  • National, state, and urban area vaccination coverage among children aged 19–35 months – United States, 2004. MMWR Morb. Mortal. Wkly Rep.54(29), 717–721 (2005).
  • National, state, and urban area vaccination coverage among children aged 19–35 months – United States, 2006. MMWR Morb. Mortal. Wkly Rep.56, 880–885 (2007).
  • Whitney CG. Impact of conjugate pneumococcal vaccines. Pediatr. Infect. Dis. J.24(8), 729–730 (2005).
  • Pelton SI, Huot H, Finkelstein JA et al. Emergence of 19A as virulent and multidrug resistant Pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J.26(6), 468–472 (2007).
  • Messina AF, Katz-Gaynor K, Barton T et al. Impact of the pneumococcal conjugate vaccine on serotype distribution and antimicrobial resistance of invasive Streptococcus pneumoniae isolates in Dallas, TX, children from 1999 through 2005. Pediatr. Infect. Dis. J.26(6), 461–467 (2007).
  • Moore MR, Gertz RE, Jr., Woodbury RL et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J. Infect. Dis.197(7), 1016–1027 (2008).
  • Darrieux M, Moreno AT, Ferreira DM et al. Recognition of pneumococcal isolates by antisera raised against PspA fragments from different clades. J. Med. Microbiol.57(Pt 3), 273–278 (2008).
  • Widdowson CA, Klugman KP. Molecular mechanisms of resistance to commonly used non-blactam drugs in Streptococcus pneumoniae. Semin. Respir. Infect.14(3), 255–268 (1999).
  • Smith HJ, Nichol KA, Hoban DJ, Zhanel GG. Stretching the mutant prevention concentration (MPC) beyond its limits. J. Antimicrob. Chemother.51(6), 1323–1325 (2003).
  • Hakenbeck R, Kaminski K, Konig A et al. Penicillin-binding proteins in β-lactam-resistant Streptococcus pneumoniae. Microb. Drug Resist.5(2), 91–99 (1999).
  • Janoir C, Zeller V, Kitzis MD, Moreau NJ, Gutmann L. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob. Agents Chemother.40(12), 2760–2764 (1996).
  • Piddock LJ, Johnson MM, Simjee S, Pumbwe L. Expression of efflux pump gene pmrA in fluoroquinolone-resistant and -susceptible clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother.46(3), 808–812 (2002).
  • Sinus and Allergy Healthcare Partnership. Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Sinus and Allergy Health Partnership. Otolaryngol. Head Neck Surg.123(1 Pt 2), 5–31 (2000).
  • Jacobs MR. In vivo veritas: in vitro macrolide resistance in systemic Streptococcus pneumoniae infections does result in clinical failure. Clin. Infect. Dis.35(5), 565–569 (2002).
  • Lonks JR, Garau J, Gomez L et al. Failure of macrolide antibiotic treatment in patients with bacteremia due to erythromycin-resistant Streptococcus pneumoniae. Clin. Infect. Dis.35(5), 556–564 (2002).
  • Dagan R, Johnson CE, McLinn S et al. Bacteriologic and clinical efficacy of amoxicillin/clavulanate vs. azithromycin in acute otitis media. Pediatr. Infect. Dis. J.19(2), 95–104 (2000).
  • Dagan R, Leibovitz E, Fliss DM et al. Bacteriologic efficacies of oral azithromycin and oral cefaclor in treatment of acute otitis media in infants and young children. Antimicrob. Agents Chemother.44(1), 43–50 (2000).
  • Jenkins SG, Brown SD, Farrell DJ. Trends in antibacterial resistance among Streptococcus pneumoniae isolated in the USA: update from PROTEKT US Years 1–4. Ann. Clin. Microbiol. Antimicrob.7, 1 (2008).
  • Widdowson CA, Klugman KP. Emergence of the M phenotype of erythromycin-resistant pneumococci in South Africa. Emerg. Infect. Dis.4(2), 277–281 (1998).
  • Hsueh PR, Teng LJ, Lee LN et al. Increased prevalence of erythromycin resistance in streptococci: substantial upsurge in erythromycin-resistant M phenotype in Streptococcus pyogenes (1979–1998) but not in Streptococcus pneumoniae (1985–1999) in Taiwan. Microb. Drug Resist.8(1), 27–33 (2002).
  • Marchandin H, Jean-Pierre H, Jumas-Bilak E et al. Distribution of macrolide resistance genes erm(B) and mef(A) among 160 penicillin-intermediate clinical isolates of Streptococcus pneumoniae isolated in southern France. Pathol. Biol.49(7), 522–527 (2001).
  • Hoffman HL, Klepser ME, Ernst EJ et al. Influence of macrolide susceptibility on efficacies of clarithromycin and azithromycin against Streptococcus pneumoniae in a murine lung infection model. Antimicrob. Agents Chemother.47(2), 739–746 (2003).
  • Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev.65(2), 232–260 (2001).
  • Montanari MP, Cochetti I, Mingoia M, Varaldo PE. Phenotypic and molecular characterization of tetracycline- and erythromycin-resistant strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother.47(7), 2236–2241 (2003).
  • Widdowson CA, Klugman KP, Hanslo D. Identification of the tetracycline resistance gene, tet(O), in Streptococcus pneumoniae. Antimicrob. Agents Chemother.40(12), 2891–2893 (1996).
  • Luna VA, Roberts MC. The presence of the tetO gene in a variety of tetracycline-resistant Streptococcus pneumoniae serotypes from Washington state. J. Antimicrob. Chemother.42(5), 613–619 (1998).
  • Taylor DE, Chau A. Tetracycline resistance mediated by ribosomal protection. Antimicrob. Agents Chemother.40(1), 1–5 (1996).
  • Goldstein FW, Kitzis MD, Acar JF. N, N-dimethylglycyl-amido derivative of minocycline and 6-demethyl-6-desoxytetracycline, two new glycylcyclines highly effective against tetracycline-resistant Gram-positive cocci. Antimicrob. Agents Chemother.38(9), 2218–2220 (1994).
  • Dagan R, Leibovitz E, Cheletz G, Leiberman A, Porat N. Antibiotic treatment in acute otitis media promotes superinfection with resistant Streptococcus pneumoniae carried before initiation of treatment. J. Infect. Dis.183(6), 880–886 (2001).
  • McCormick AW, Whitney CG, Farley MM et al. Geographic diversity and temporal trends of antimicrobial resistance in Streptococcus pneumoniae in the United States. Nat. Med.9(4), 424–430 (2003).
  • Lipsitch M. Measuring and interpreting associations between antibiotic use and penicillin resistance in Streptococcus pneumoniae. Clin. Infect. Dis.32(7), 1044–1054 (2001).
  • Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect. Dis.2(10), 593–604 (2002).
  • Giebink GS. Childhood sinusitis: pathophysiology, diagnosis and treatment. Pediatr. Infect. Dis. J.13(1 Suppl. 1), S55–S58 (1994).
  • Appelbaum PC. Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin. Infect. Dis.15(1), 77–83 (1992).
  • Jacobs MR, Appelbaum PC. Antibiotic-resistant pneumococci. Rev. Med. Microbiol.6, 77–93 (1995).
  • Doern GV. Trends in antimicrobial susceptibility of bacterial pathogens of the respiratory tract. Am. J. Med.99(6B), S3–S7 (1995).
  • Jacobs MR, Bajaksouzian S, Zilles A et al. Susceptibilities of Streptococcus pneumoniae and Haemophilus influenzae to 10 oral antimicrobial agents based on pharmacodynamic parameters: 1997 U.S. Surveillance Study. Antimicrob. Agents Chemother.43(8), 1901–1908 (1999).
  • Jacobs MR. Increasing antibiotic resistance among otitis media pathogens and their susceptibility to oral agents based on pharmacodynamic parameters. Pediatr. Infect. Dis. J.19(Suppl. 5), S47–S55; discussion S55–S46 (2000).
  • Jacobs MR, Koornhof HJ, Robins-Browne RM et al. Emergence of multiple resistant pneumococci. N. Engl. J. Med., 299(14), 735–740 (1978).
  • Caputo GM, Appelbaum PC, Liu HH. Infections due to penicillin-resistant pneumococci. Clinical, epidemiologic, and microbiologic features. Arch. Intern. Med.153(11), 1301–1310 (1993).
  • Appelbaum PC, Bhamjee A, Scragg JN et al.Streptococcus pneumoniae resistant to penicillin and chloramphenicol. Lancet2(8046), 995–997 (1977).
  • Jacobs MR, Felmingham D, Appelbaum PC, Gruneberg RN. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J. Antimicrob. Chemother.52(2), 229–246 (2003).
  • Fasola EL, Bajaksouzian S, Appelbaum PC, Jacobs MR. Variation in erythromycin and clindamycin susceptibilities of Streptococcus pneumoniae by four test methods. Antimicrob. Agents Chemother.41(1), 129–134 (1997).
  • Chen DK, McGeer A, de Azavedo JC, Low DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. Canadian Bacterial Surveillance Network. N. Engl. J. Med.341(4), 233–239 (1999).
  • von Gottberg A, Klugman KP, Cohen C et al. Emergence of levofloxacin-non-susceptible Streptococcus pneumoniae and treatment for multidrug-resistant tuberculosis in children in South Africa: a cohort observational surveillance study. Lancet371(9618), 1108–1113 (2008).
  • Fritsche TR, Stilwell MG, Jones RN. Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). Clin. Microbiol. Infect.11(12), 974–984 (2005).
  • Davies TA, Shang W, Bush K, Flamm RK. Activity of doripenem and comparator β-lactams against US clinical isolates of Streptococcus pneumoniae with defined mutations in the penicillin-binding domains of pbp1a, pbp2b and pbp2x. J. Antimicrob. Chemother.61(3), 751–753 (2008).
  • Hebeisen P, Heinze-Krauss I, Angehrn P et al.in vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob. Agents Chemother.45(3), 825–836 (2001).
  • Jones RN, Huynh HK, Biedenbach DJ, Fritsche TR, Sader HS. Doripenem (S-4661), a novel carbapenem: comparative activity against contemporary pathogens including bactericidal action and preliminary in vitro methods evaluations. J. Antimicrob. Chemother.54(1), 144–154 (2004).
  • Fritsche TR, Sader HS, Jones RN. Antimicrobial activity of ceftobiprole, a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: results from the SENTRY Antimicrobial Surveillance Program (2005–2006). Diagn. Microbiol. Infect. Dis.61(1), 86–95 (2008).
  • Tanitame A, Oyamada Y, Ofuji K et al. Synthesis and antibacterial activity of novel and potent DNA gyrase inhibitors with azole ring. Bioorg. Med. Chem.12(21), 5515–5524 (2004).
  • Tanitame A, Oyamada Y, Ofuji K et al. Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J. Med. Chem.47(14), 3693–3696 (2004).
  • Inagaki H, Takahashi H, Takemura M. Synthesis and antibacterial activity of novel 6-fluoro-1-[(1R,2S)-2-fluorocyclopropan-1-yl]-4-oxoquinoline-3-carboxylic acids bearing cyclopropane-fused 2-amino-8-azabicyclo[4.3.0]nonan-8-yl substituents at the C-7 position. Bioorg. Med. Chem. Lett.14(20), 5193–5198 (2004).
  • Keating GM, Scott LJ. Moxifloxacin: a review of its use in the management of bacterial infections. Drugs64(20), 2347–2377 (2004).
  • Jacobs MR, Bajaksouzian S, Windau A et al.In vitro activity of the new quinolone WCK 771 against staphylococci. Antimicrob. Agents Chemother.48(9), 3338–3342 (2004).
  • Pankuch GA, Jacobs MR, Khorakiwala H et al. Antipneumococcal activities of WCK 771A and WCK 919 (two new quinolones) compared to 12 other agents against 177 quinolone-susceptible pneumococci. Presented at: 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, USA, 16–19 December (2001) (Abstract F-541).
  • Otani T, Tanaka M, Ito E et al.In vitro and invivo antibacterial activities of DK-507k, a novel fluoroquinolone. Antimicrob. Agents Chemother.47(12), 3750–3759 (2003).
  • Nilius AM, Shen LL, Hensey-Rudloff D et al.In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob. Agents Chemother.47(10), 3260–3269 (2003).
  • Ackermann G, Rodloff AC. Drugs of the 21st Century: telithromycin (HMR 3647) – the first ketolide. J. Antimicrob. Chemother.51(3), 497–511 (2003).
  • Fogarty CM, Kohno S, Buchanan P, Aubier M, Baz M. Community-acquired respiratory tract infections caused by resistant pneumococci: clinical and bacteriological efficacy of the ketolide telithromycin. J. Antimicrob. Chemother.51(4), 947–955 (2003).
  • Park C, Blais J, Lopez S et al. VIC-105555, a new lincosamide with improved in vivo efficacy and good in vitro activity. Presented at: 44th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC, USA, 30 October–2 November (2004) (Abstract F-1392).
  • Blais J, Park C, Maniar M et al. Bactericidal activity, postantibiotic effect and frequency of resistance of the novel lincosamide VIC-105555. Presented at: 44th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC, USA, 30 October–2 November (2004) (Abstract F-1391).
  • Tembe V, Chen D, Scott L et al. Improved Pharmacokinetics of VIC-105555: long half-life and large volume of distribution in multiple species. Presented at: 44th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC, USA, 30 October–2 November (2004) (Abstract F-1395).
  • Ament PW, Jamshed N, Horne JP. Linezolid: its role in the treatment of Gram-positive, drug-resistant bacterial infections. Am. Fam. Physician65(4), 663–670 (2002).
  • Hoellman DB, Lin G, Ednie LM et al. Antipneumococcal and antistaphylococcal activities of ranbezolid (RBX 7644), a new oxazolidinone, compared to those of other agents. Antimicrob. Agents Chemother.47(3), 1148–1150 (2003).
  • Manzella JP. Quinupristin–dalfopristin: a new antibiotic for severe Gram-positive infections. Am. Fam. Physician64(11), 1863–1866 (2001).
  • Carpenter CF, Chambers HF. Daptomycin: another novel agent for treating infections due to drug-resistant Gram-positive pathogens. Clin. Infect. Dis.38(7), 994–1000 (2004).
  • Pertel PE, Bernardo P, Fogarty C et al. Effects of prior effective therapy on the efficacy of daptomycin and ceftriaxone for the treatment of community-acquired pneumonia. Clin. Infect. Dis.46(8), 1142–1151 (2008).
  • Silverman JA, Mortin LI, Vanpraagh AD, Li T, Alder J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J. Infect. Dis.191(12), 2149–2152 (2005).
  • Murphy S, Pinney RJ. Teicoplanin or vancomycin in the treatment of Gram-positive infections? J. Clin. Pharm. Ther.20(1), 5–11 (1995).
  • Brown GM. The biosynthesis of folic acid. II. Inhibition by sulfonamides. J. Biol. Chem.237, 536–540 (1962).
  • Hitchings GH, Burchall JJ. Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv. Enzymol. Relat. Areas Mol. Biol.27, 417–468 (1965).
  • Hartman PG. Molecular aspects and mechanism of action of dihydrofolate reductase inhibitors. J. Chemother.5(6), 369–376 (1993).
  • Schneider P, Hawser S, Islam K. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg. Med. Chem. Lett.13(23), 4217–4221 (2003).
  • Jacobs MR, Good CE, Windau A et al. AR-709, a novel diaminopyrimidine compound: activity against Streptococcus pneumoniae. Presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy 2006. San Francisco, CA, USA, 27–30 September (2006) (Abstract F1–1956).
  • Isaacson G, Aronoff SC. Linezolid for tympanostomy tube otorrhea caused by methicillin-resistant Staphylococcus aureus and multiple drug-resistant Streptococcus pneumoniae. Int. J. Pediatr. Otorhinolaryngol.72(5), 647–651 (2008).
  • Jacobs MR, Appelbaum PC. Streptococcus pneumoniae: activity of newer agents against penicillin-resistant strains. Curr. Infect. Dis. Rep.1(1), 13–21 (1999).
  • Hoellman DB, Lin G, Jacobs MR, Appelbaum PC. Anti-pneumococcal activity of gatifloxacin compared with other quinolone and non-quinolone agents. J. Antimicrob. Chemother.43(5), 645–649 (1999).
  • Pankuch GA, Hoellman DB, Jacobs MR, Appelbaum PC. Antipneumococcal activity of MEN 10700, a new penem, compared with other compounds, by MIC and time-kill kinetics. J. Antimicrob. Chemother.44(3), 381–384 (1999).
  • Pankuch GA, Visalli MA, Jacobs MR, Appelbaum PC. Susceptibilities of penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, compared with susceptibilities to 17 other agents. Antimicrob. Agents Chemother.42(3), 624–630 (1998).
  • Pankuch GA, Davies TA, Jacobs MR, Appelbaum PC. Antipneumococcal activity of ertapenem (MK-0826) compared to those of other agents. Antimicrob. Agents Chemother.46(1), 42–46 (2002).
  • Jones RN, Mutnick AH, Varnam DJ. Impact of modified nonmeningeal Streptococcus pneumoniae interpretive criteria (NCCLS M100-S12) on the susceptibility patterns of five parenteral cephalosporins: report from the SENTRY antimicrobial surveillance program (1997 to 2001). J. Clin. Microbiol.40(11), 4332–4333 (2002).
  • Pfaller MA, Jones RN. A review of the in vitro activity of meropenem and comparative antimicrobial agents tested against 30,254 aerobic and anaerobic pathogens isolated world wide. Diagn. Microbiol. Infect. Dis.28(4), 157–163 (1997).
  • Jones RN, Ross JE, Fritsche TR, Sader HS. Oxazolidinone susceptibility patterns in 2004: report from the Zyvox Annual Appraisal of Potency and Spectrum (ZAAPS) Program assessing isolates from 16 nations. J. Antimicrob. Chemother.57(2), 279–287 (2006).
  • Critchley IA, Brown SD, Traczewski MM, Tillotson GS, Janjic N. National and regional assessment of antimicrobial resistance among community-acquired respiratory tract pathogens identified in a 2005–2006 U.S. faropenem surveillance study. Antimicrob. Agents Chemother.51(12), 4382–4389 (2007).
  • Song JH, Ko KS, Lee MY et al.In vitro activities of ertapenem against drug-resistant Streptococcus pneumoniae and other respiratory pathogens from 12 Asian countries. Diagn. Microbiol. Infect. Dis.56(4), 445–450 (2006).
  • Marchese A, Gualco L, Schito AM, Debbia EA, Schito GC. In vitro activity of ertapenem against selected respiratory pathogens. J. Antimicrob. Chemother.54(5), 944–951 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.