659
Views
199
CrossRef citations to date
0
Altmetric
Review

Emergence and management of drug-resistant enterococcal infections

&
Pages 637-655 | Published online: 10 Jan 2014

References

  • Murray BE. Vancomycin-resistant enterococcal infections. N. Engl. J. Med.342, 710–721 (2000).
  • Freeman R, Kearns AM, Lightfoot NF. Heat resistance of nosocomial enterococci. Lancet344, 64–65 (1994).
  • Bradley CR, Fraise AP. Heat and chemical resistance of enterococci. J. Hosp. Infect.34, 191–196 (1996).
  • Top J, Willems R, Bonten M. Emergence of CC17 Enterococcus faecium : from commensal to hospital-adapted pathogen. FEMS Immunol. Med. Microbiol.52, 297–308 (2008).
  • Drees M, Snydman DR, Schmid CH et al. Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin. Infect. Dis.46, 678–685 (2008).
  • Olivier CN, Blake RK, Steed LL, Salgado CD. Risk of vancomycin-resistant Enterococcus (VRE) bloodstream infection among patients colonized with VRE. Infect. Control Hosp. Epidemiol.29, 404–409 (2008).
  • Goetz AM, Wagener MM, Miller JM, Muder RR. Risk of infection due to central venous catheters: effect of site of placement and catheter type. Infect. Control. Hosp. Epidemiol.19, 842–845 (1998).
  • Linden PK. Optimizing therapy for vancomycin-resistant enterococci (VRE). Semin. Respir. Crit. Care Med.28, 632–645 (2007).
  • Murray BE. The life and times of the Enterococcus. Clin. Microbiol. Rev.3, 46–65 (1990).
  • Donskey CJ, Hanrahan JA, Hutton RA, Rice LB. Effect of parenteral antibiotic administration on the establishment of colonization with vancomycin-resistant Enterococcus faecium in the mouse gastrointestinal tract. J. Infect. Dis.181, 1830–1833 (2000).
  • Donskey CJ, Chowdhry TK, Hecker MT et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med.343, 1925–1932 (2000).
  • Eliopoulos GM. Aminoglycoside resistant enterococcal endocarditis. Infect. Dis. Clin. North Am.7, 117–133 (1993).
  • Herzstein J, Ryan JL, Mangi RJ, Greco TP, Andriole VT. Optimal therapy for enterococcal endocarditis. Am. J. Med.76, 186–191 (1984).
  • Robbins WC, Tompsett R. Treatment of enterococcal endocarditis and bacteremia; results of combined therapy with penicillin and streptomycin. Am. J. Med.10, 278–299 (1951).
  • Havard CW, Garrod LP, Waterworth PM. Deaf or dead? A case of subacute bacterial endocarditis treated with penicillin and neomycin. Br. Med. J.1, 688–689 (1959).
  • Zervos MJ, Kauffman CA, Therasse PM, Bergman AG, Mikesell TS, Schaberg DR. Nosocomial infection by gentamicin-resistant Streptococcus faecalis. An epidemiologic study. Ann. Intern. Med.106, 687–691 (1987).
  • Schwartz BS, Ngo PD, Guglielmo BJ. Daptomycin treatment failure for vancomycin-resistant Enterococcus faecium infective endocarditis: impact of protein binding? Ann. Pharmacother.42, 289–290 (2008).
  • Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn. Microbiol. Infect. Dis.58, 163–170 (2007).
  • National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control.32, 470–485 (2004).
  • Karlowsky JA, Jones ME, Draghi DC, Thornsberry C, Sahm DF, Volturo GA. Prevalence and antimicrobial susceptibilities of bacteria isolated from blood cultures of hospitalized patients in the United States in 2002. Ann. Clin. Microbiol. Antimicrob.3, 7 (2004).
  • Iwen PC, Kelly DM, Linder J et al. Change in prevalence and antibiotic resistance of Enterococcus species isolated from blood cultures over an 8-year period. Antimicrob. Agents Chemother.41, 494–495 (1997).
  • Jones RN, Erwin ME, Anderson SC. Emerging multiply resistant enterococci among clinical isolates. II. Validation of the Etest to recognize glycopeptide-resistant strains. Diagn. Microbiol. Infect. Dis.21, 95–100 (1995).
  • Contreras G, Díaz Granados C, Cortes L, et al. Nosocomial outbreak of vancomycin-resistant Enteroccocus gallinarum: untaming of rare species of enterococci. J. Hosp. Infect. (2008) (In press).
  • Cooper MP, Lessa F, Brems B et al. Outbreak of Enterococcus gallinarum infections after total knee arthroplasty. Infect. Control. Hosp. Epidemiol.29, 361–363 (2008).
  • Salgado CD, Farr BM. Outcomes associated with vancomycin-resistant enterococci: a meta-analysis. Infect. Control. Hosp. Epidemiol.24, 690–698 (2003).
  • DiazGranados CA, Jernigan JA. Impact of vancomycin resistance on mortality among patients with neutropenia and enterococcal bloodstream infection. J. Infect. Dis.191, 588–595 (2005).
  • Linden PK, Pasculle AW, Manez R et al. Differences in outcomes for patients with bacteremia due to vancomycin-resistant Enterococcus faecium or vancomycin-susceptible E. faecium. Clin. Infect. Dis.22, 663–670 (1996).
  • Lucas GM, Lechtzin N, Puryear DW, Yau LL, Flexner CW, Moore RD. Vancomycin-resistant and vancomycin-susceptible enterococcal bacteremia: comparison of clinical features and outcomes. Clin. Infect. Dis.26, 1127–1133 (1998).
  • Stosor V, Peterson LR, Postelnick M, Noskin GA. Enterococcus faecium bacteremia: does vancomycin resistance make a difference? Arch. Intern. Med.158, 522–527 (1998).
  • Krogstad DJ, Pargwette AR. Defective killing of enterococci: a common property of antimicrobial agents acting on the cell wall. Antimicrob. Agents Chemother.17, 965–968 (1980).
  • Al-Obeid S, Gutmann L, Williamson R. Modification of penicillin-binding proteins of penicillin-resistant mutants of different species of enterococci. J. Antimicrob. Chemother.26, 613–618 (1990).
  • Ligozzi M, Pittaluga F, Fontana R. Modification of penicillin-binding protein 5 associated with high-level ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother.40, 354–357 (1996).
  • Klare I, Rodloff AC, Wagner J, Witte W, Hakenbeck R. Overproduction of a penicillin-binding protein is not the only mechanism of penicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother.36, 783–787 (1992).
  • Fontana R, Aldegheri M, Ligozzi M, Lopez H, Sucari A, Satta G. Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother.38, 1980–1983 (1994).
  • Mainardi JL, Legrand R, Arthur M, Schoot B, van Heijenoort J, Gutmann L. Novel mechanism of β-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J. Biol. Chem.275, 16490–16496 (2000).
  • Murray BE, Mederski-Samoraj B, Foster SK, Brunton JL, Harford P. In vitro studies of plasmid-mediated penicillinase from Streptococcus faecalis suggest a staphylococcal origin. J. Clin. Invest.77, 289–293 (1986).
  • Tomayko JF, Zscheck KK, Singh KV, Murray BE. Comparison of the β-lactamase gene cluster in clonally distinct strains of Enterococcus faecalis. Antimicrob. Agents Chemother.40, 1170–1174 (1996).
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 18th informational supplement. M100-S18. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2008).
  • Wildfeuer A, Ruhle KH, Bolcskei PL, Springsklee M. Concentrations of ampicillin and sulbactam in serum and in various compartments of the respiratory tract of patients. Infection22, 149–151 (1994).
  • Calderwood SB, Wennersten C, Moellering RC Jr. Resistance to antibiotic synergism in Streptococcus faecalis : further studies with amikacin and with a new amikacin derivative, 4´-deoxy, 6´- N-methylamikacin. Antimicrob. Agents Chemother.19, 549–555 (1981).
  • Calderwood SA, Wennersten C, Moellering RC Jr, Kunz LJ, Krogstad DJ. Resistance to six aminoglycosidic aminocyclitol antibiotics among enterococci: prevalence, evolution, and relationship to synergism with penicillin. Antimicrob. Agents Chemother.12, 401–405 (1977).
  • Moellering RC Jr, Wennersten C, Weinberg AN. Studies on antibiotic synergism against enterococci. I. Bacteriologic studies. J. Lab. Clin. Med.77, 821–828 (1971).
  • Zimmermann RA, Moellering RC Jr, Weinberg AN. Mechanism of resistance to antibiotic synergism in enterococci. J. Bacteriol.105, 873–879 (1971).
  • Chow JW. Aminoglycoside resistance in enterococci. Clin. Infect. Dis.31, 586–589 (2000).
  • Mederski-Samoraj BD, Murray BE. High-level resistance to gentamicin in clinical isolates of enterococci. J. Infect. Dis.147, 751–757 (1983).
  • Hayden MK, Koenig GI, Trenholme GM. Bactericidal activities of antibiotics against vancomycin-resistant Enterococcus faecium blood isolates and synergistic activities of combinations. Antimicrob. Agents Chemother.38, 1225–1229 (1994).
  • Moellering RC Jr, Murray BE, Schoenbaum SC, Adler J, Wennersten CB. A novel mechanism of resistance to penicillin-gentamicin synergism in Streptococcus faecalis. J. Infect. Dis.141, 81–86 (1980).
  • Chow JW, Zervos MJ, Lerner SA et al. A novel gentamicin resistance gene in Enterococcus. Antimicrob. Agents Chemother.41, 511–514 (1997).
  • Krogstad DJ, Korfhagen TR, Moellering RC Jr, Wennersten C, Swartz MN. Aminoglycoside-inactivating enzymes in clinical isolates of Streptococcus faecalis. An explanation for resistance to antibiotic synergism. J. Clin. Invest.62, 480–486 (1978).
  • Kariyama R, Kumon H, Chow L et al.In-vitro activity of the combination of ampicillin and arbekacin against high-level gentamicin-resistant enterococci. J. Antimicrob. Chemother.42, 836–838 (1998).
  • Kak V, Donabedian SM, Zervos MJ, Kariyama R, Kumon H, Chow JW. Efficacy of ampicillin plus arbekacin in experimental rabbit endocarditis caused by an Enterococcus faecalis strain with high-level gentamicin resistance. Antimicrob. Agents Chemother.44, 2545–2546 (2000).
  • Gavalda J, Len O, Miro JM et al. Brief communication: treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann. Intern. Med.146, 574–579 (2007).
  • Tascini C, Doria R, Leonildi A, Martinelli C, Menichetti F. Efficacy of the combination ampicillin plus ceftriaxone in the treatment of a case of enterococcal endocarditis due to Enterococcus faecalis highly resistant to gentamicin: efficacy of the “ ex vivo ” synergism method. J. Chemother.16, 400–403 (2004).
  • Mainardi JL, Gutmann L, Acar JF, Goldstein FW. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob. Agents Chemother.39, 1984–1987 (1995).
  • Antony SJ, Ladner J, Stratton CW, Raudales F, Dummer SJ. High-level aminoglycoside-resistant enterococcus causing endocarditis successfully treated with a combination of ampicillin, imipenem and vancomycin. Scand J. Infect. Dis.29, 628–630 (1997).
  • Brandt CM, Rouse MS, Laue NW, Stratton CW, Wilson WR, Steckelberg JM. Effective treatment of multidrug-resistant enterococcal experimental endocarditis with combinations of cell wall-active agents. J. Infect. Dis.173, 909–913 (1996).
  • Arias CA, Singh KV, Panesso D, Murray BE. Time-kill and synergism studies of ceftobiprole against Enterococcus faecalis, including β-lactamase-producing and vancomycin-resistant isolates. Antimicrob. Agents Chemother.51, 2043–2047 (2007).
  • Mushtaq S, Warner M, Ge Y, Kaniga K, Livermore DM. In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes. J. Antimicrob. Chemother.60, 300–311 (2007).
  • Arias CA, Singh KV, Panesso D, Murray BE. Evaluation of ceftobiprole medocaril against Enterococcus faecalis in a mouse peritonitis model. J. Antimicrob. Chemother.60, 594–598 (2007).
  • Boyd DA, Willey BM, Fawcett D, Gillani N, Mulvey MR. Molecular characterization of low level vancomycin resistant Enterococcus faecalis N06-0364 harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob. Agents Chemother.52(7), 2667–2672 (2008).
  • Arthur M, Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother.37, 1563–1571 (1993).
  • Arias CA, Courvalin P, Reynolds PE. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother.44, 1660–1666 (2000).
  • Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob. Agents Chemother.43, 2161–2164 (1999).
  • Depardieu F, Bonora MG, Reynolds PE, Courvalin P. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol. Microbiol.50, 931–948 (2003).
  • Perichon B, Reynolds P, Courvalin P. VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob. Agents Chemother.41, 2016–2018 (1997).
  • Weigel LM, Clewell DB, Gill SR et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science302, 1569–1571 (2003).
  • Chang S, Sievert DM, Hageman JC et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med.348, 1342–1347 (2003).
  • Tenover FC. Vancomycin-resistant Staphylococcus aureus : a perfect but geographically limited storm? Clin. Infect. Dis.46, 675–677 (2008).
  • Zhu W, Clark NC, McDougal LK, Hageman J, McDonald LC, Patel JB. Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob Agents Chemother.52, 452–457 (2008).
  • Arias CA, Torres HA, Singh KV et al. Failure of daptomycin monotherapy for endocarditis caused by an Enterococcus faecium strain with vancomycin-resistant and vancomycin-susceptible subpopulations and evidence of in vivo loss of the vanA gene cluster. Clin. Infect. Dis.45, 1343–1346 (2007).
  • Allen NE, Nicas TI. Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev.26, 511–532 (2003).
  • Zelenitsky SA, Karlowsky JA, Zhanel GG, Hoban DJ, Nicas T. Time-kill curves for a semisynthetic glycopeptide, LY333328, against vancomycin-susceptible and vancomycin-resistant Enterococcus faecium strains. Antimicrob. Agents Chemother.41, 1407–1408 (1997).
  • Nicas TI, Mullen DL, Flokowitsch JE et al. Semisynthetic glycopeptide antibiotics derived from LY264826 active against vancomycin-resistant enterococci. Antimicrob. Agents Chemother.40, 2194–2199 (1996).
  • Baltch AL, Smith RP, Ritz WJ, Bopp LH. Comparison of inhibitory and bactericidal activities and postantibiotic effects of LY333328 and ampicillin used singly and in combination against vancomycin-resistant Enterococcus faecium. Antimicrob. Agents Chemother.42, 2564–2568 (1998).
  • Arhin FF, Sarmiento I, Belley A et al. Effect of polysorbate 80 on oritavancin binding to plastic surfaces: implications for susceptibility testing. Antimicrob. Agents Chemother.52, 1597–1603 (2008).
  • Reynolds PE. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis.8, 943–950 (1989).
  • Mackay JP, Gerhard U, Beauregard DA, Westwell MS, Searle MS, Williams DH. Glycopeptide antibiotic activity and the possible role of dimerization: a model for biological signalling. J. Am. Chem. Soc.116, 4581–4590 (1994).
  • Groves P, Searle MS, Mackay JP, Williams DH. The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics. Structure2, 747–754 (1994).
  • Williams DH, Searle MS, Mackay JP, Gerhard U, Maplestone RA. Toward an estimation of binding constants in aqueous solution: studies of associations of vancomycin group antibiotics. Proc. Natl Acad. Sci. USA90, 1172–1178 (1993).
  • Cristofaro MF, Beauregard DA, Yan H, Osborn NJ, Williams DH. Cooperativity between non-polar and ionic forces in the binding of bacterial cell wall analogues by vancomycin in aqueous solution. J. Antibiot. (Tokyo)48, 805–810 (1995).
  • Allen NE, LeTourneau DL, Hobbs JN Jr, Thompson RC. Hexapeptide derivatives of glycopeptide antibiotics: tools for mechanism of action studies. Antimicrob. Agents Chemother.46, 2344–2348 (2002).
  • Fetterly GJ, Ong CM, Bhavnani SM et al. Pharmacokinetics of oritavancin in plasma and skin blister fluid following administration of a 200-milligram dose for 3 days or a single 800-milligram dose. Antimicrob. Agents Chemother.49, 148–152 (2005).
  • Bhavnani SM, Owen JS, Loutit JS, Porter SB, Ambrose PG. Pharmacokinetics, safety, and tolerability of ascending single intravenous doses of oritavancin administered to healthy human subjects. Diagn. Microbiol. Infect. Dis.50, 95–102 (2004).
  • Saleh-Mghir A, Lefort A, Petegnief Y et al. Activity and diffusion of LY333328 in experimental endocarditis due to vancomycin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother.43, 115–120 (1999).
  • Lefort A, Saleh-Mghir A, Garry L, Carbon C, Fantin B. Activity of LY333328 combined with gentamicin in vitro and in rabbit experimental endocarditis due to vancomycin-susceptible or -resistant Enterococcus faecalis. Antimicrob. Agents Chemother.44, 3017–3021 (2000).
  • Crandon J, Nicolau DP. Oritavancin: a potential weapon in the battle against serious Gram-positive pathogens. Future Microbiol.3, 251–263 (2008).
  • Loutit JS, O’Riordan W, San Juan J, Mensa J, Hanning R, Huang S. Phase 2 trial comparing four regimens of oritavancin vs comparator in the treatment of patients with S. aureus bacteremia. Clin. Microbiol. Infect.10, P541 (2004).
  • Wasilewski MM, Disch PP, McGill JM, Harris HW, O’Riordan W, Zeckel ML. Equivalence of shorter course therapy with oritavancin vs vancomcyin/cephalexin in complicated skin/skin structure infections. Presented at: 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, USA 16-19 December 2001.
  • Van Bambeke F, Saffran J, Mingeot-Leclercq MP, Tulkens PM. Mixed-lipid storage disorder induced in macrophages and fibroblasts by oritavancin (LY333328), a new glycopeptide antibiotic with exceptional cellular accumulation. Antimicrob. Agents Chemother.49, 1695–1700 (2005).
  • Billeter M, Zervos MJ, Chen AY, Dalovisio JR, Kurukularatne C. Dalbavancin: a novel once-weekly lipoglycopeptide antibiotic. Clin. Infect. Dis.46, 577–583 (2008).
  • Streit JM, Sader HS, Fritsche TR, Jones RN. Dalbavancin activity against selected populations of antimicrobial-resistant Gram-positive pathogens. Diagn. Microbiol. Infect. Dis.53, 307–310 (2005).
  • Gales AC, Sader HS, Jones RN. Antimicrobial activity of dalbavancin tested against Gram-positive clinical isolates from Latin American medical centres. Clin. Microbiol. Infect.11, 95–100 (2005).
  • Candiani G, Abbondi M, Borgonovi M, Romano G, Parenti F. In-vitro and in-vivo antibacterial activity of BI 397, a new semi-synthetic glycopeptide antibiotic. J. Antimicrob. Chemother.44, 179–192 (1999).
  • Jauregui LE, Babazadeh S, Seltzer E et al. Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin. Infect. Dis.41, 1407–1415 (2005).
  • Leonard SN, Rybak MJ. Telavancin: an antimicrobial with a multifunctional mechanism of action for the treatment of serious Gram-positive infections. Pharmacotherapy28, 458–468 (2008).
  • Higgins DL, Chang R, Debabov DV et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.49, 1127–1134 (2005).
  • Draghi DC, Benton BM, Krause KM, Thornsberry C, Pillar C, Sahm DF. In vitro activity of telavancin against recent Gram-positive clinical isolates: results of the 2004–2005 Prospective European Surveillance Initiative. J. Antimicrob. Chemother.62(1), 116–121 (2008).
  • King A, Phillips I, Kaniga K. Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against Gram-positive bacteria. J. Antimicrob. Chemother.53, 797–803 (2004).
  • Jansen WT, Verel A, Verhoef J, Milatovic D. In vitro activity of telavancin against Gram-positive clinical isolates recently obtained in Europe. Antimicrob. Agents Chemother.51, 3420–3424 (2007).
  • Stryjewski ME, Graham DR, Wilson SE et al. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by Gram-positive organisms. Clin. Infect. Dis.46, 1683–1693 (2008).
  • Enoch DA, Bygott JM, Daly ML, Karas JA. Daptomycin. J. Infect.55, 205–213 (2007).
  • Tally FP, DeBruin MF. Development of daptomycin for Gram-positive infections. J. Antimicrob. Chemother.46, 523–526 (2000).
  • Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob. Agents Chemother.47, 2538–2544 (2003).
  • Jones T, Yeaman MR, Sakoulas G et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob. Agents Chemother.52, 269–278 (2008).
  • Cui L, Tominaga E, Neoh HM, Hiramatsu K. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother.50, 1079–1082 (2006).
  • Critchley IA, Blosser-Middleton RS, Jones ME, Thornsberry C, Sahm DF, Karlowsky JA. Baseline study to determine in vitro activities of daptomycin against Gram-positive pathogens isolated in the United States in 2000–2001. Antimicrob. Agents Chemother.47, 1689–1693 (2003).
  • Akins RL, Rybak MJ. Bactericidal activities of two daptomycin regimens against clinical strains of glycopeptide intermediate-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob. Agents Chemother.45, 454–459 (2001).
  • Dandekar PK, Tessier PR, Williams P, Nightingale CH, Nicolau DP. Pharmacodynamic profile of daptomycin against Enterococcus species and methicillin-resistant Staphylococcus aureus in a murine thigh infection model. J. Antimicrob. Chemother.52, 405–411 (2003).
  • Lee BL, Sachdeva M, Chambers HF. Effect of protein binding of daptomycin on MIC and antibacterial activity. Antimicrob. Agents Chemother.35, 2505–2508 (1991).
  • Stevens MP, Edmond MB. Endocarditis due to vancomycin-resistant enterococci: case report and review of the literature. Clin. Infect. Dis.41, 1134–1142 (2005).
  • DeRyke CA, Sutherland C, Zhang B, Nicolau DP, Kuti JL. Serum bactericidal activities of high-dose daptomycin with and without coadministration of gentamicin against isolates of Staphylococcus aureus and Enterococcus species. Antimicrob. Agents Chemother.50, 3529–3534 (2006).
  • Caron F, Kitzis MD, Gutmann L et al. Daptomycin or teicoplanin in combination with gentamicin for treatment of experimental endocarditis due to a highly glycopeptide-resistant isolate of Enterococcus faecium. Antimicrob. Agents Chemother.36, 2611–2616 (1992).
  • Thibault N, Grenier L, Simard M, Bergeron MG, Beauchamp D. Attenuation by daptomycin of gentamicin-induced experimental nephrotoxicity. Antimicrob. Agents Chemother.38, 1027–1035 (1994).
  • Carrier D, Bou Khalil M, Kealey A. Modulation of phospholipase A2 activity by aminoglycosides and daptomycin: a Fourier transform infrared spectroscopic study. Biochemistry37, 7589–7597 (1998).
  • Jenkins I. Linezolid- and vancomycin-resistant Enterococcus faecium endocarditis: successful treatment with tigecycline and daptomycin. J. Hosp. Med.2, 343–344 (2007).
  • el-Mady A, Mortensen JE. The bactericidal activity of ampicillin, daptomycin, and vancomycin against ampicillin-resistant Enterococcus faecium. Diagn. Microbiol. Infect. Dis.14, 141–145 (1991).
  • Bingen E, Lambert-Zechovsky N, Leclercq R, Doit C, Mariani-Kurkdjian P. Bactericidal activity of vancomycin, daptomycin, ampicillin and aminoglycosides against vancomycin-resistant Enterococcus faecium. J. Antimicrob. Chemother.26, 619–626 (1990).
  • Rice LB, Eliopoulos GM, Moellering RC Jr. In vitro synergism between daptomycin and fosfomycin against Enterococcus faecalis isolates with high-level gentamicin resistance. Antimicrob. Agents Chemother.33, 470–473 (1989).
  • Rice LB, Eliopoulos CT, Yao JD, Eliopoulos GM, Moellering RC Jr. In vivo activity of the combination of daptomycin and fosfomycin compared with daptomycin alone against a strain of Enterococcus faecalis with high-level gentamicin resistance in the rat endocarditis model. Diagn. Microbiol. Infect. Dis.15, 173–176 (1992).
  • Pankey G, Ashcraft D, Patel N. In vitro synergy of daptomycin plus rifampin against Enterococcus faecium resistant to both linezolid and vancomycin. Antimicrob. Agents Chemother.49, 5166–5168 (2005).
  • Hidron AI, Schuetz AN, Nolte FS, Gould CV, Osborn MK. Daptomycin resistance in Enterococcus faecalis prosthetic valve endocarditis. J. Antimicrob. Chemother.61, 1394–1396 (2008).
  • Munoz-Price LS, Lolans K, Quinn JP. Emergence of resistance to daptomycin during treatment of vancomycin-resistant Enterococcus faecalis infection. Clin. Infect. Dis.41, 565–566 (2005).
  • Lewis JS 2nd, Owens A, Cadena J, Sabol K, Patterson JE, Jorgensen JH. Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob. Agents Chemother.49, 1664–1665 (2005).
  • Long JK, Choueiri TK, Hall GS, Avery RK, Sekeres MA. Daptomycin-resistant Enterococcus faecium in a patient with acute myeloid leukemia. Mayo. Clin. Proc.80, 1215–1216 (2005).
  • Green MR, Anasetti C, Sandin RL, Rolfe NE, Greene JN. Development of daptomycin resistance in a bone marrow transplant patient with vancomycin-resistant Enterococcus durans. J. Oncol. Pharm. Pract.12, 179–181 (2006).
  • Kanafani ZA, Federspiel JJ, Fowler VG Jr. Infective endocarditis caused by daptomycin-resistant Enterococcus faecalis : a case report. Scand. J. Infect. Dis.39, 75–77 (2007).
  • Lesho EP, Wortmann GW, Craft D, Moran KA. De novo daptomycin nonsusceptibility in a clinical isolate. J. Clin. Microbiol.44, 673 (2006).
  • Fraher MH, Corcoran GD, Creagh S, Feeney E. Daptomycin-resistant Enteroccoccus faecium in a patient with no prior exposure to daptomycin. J. Hosp. Infect.65, 376–378 (2007).
  • Montero CI, Stock F, Murray PR. Mechanisms of resistance to daptomycin in Enterococcus faecium. Antimicrob. Agents Chemother.52, 1167–1170 (2008).
  • Shinabarger D. Mechanism of action of the oxazolidinone antibacterial agents. Expert. Opin. Investig. Drugs8, 1195–1202 (1999).
  • Shinabarger DL, Marotti KR, Murray RW et al. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob. Agents Chemother.41, 2132–2136 (1997).
  • Leach KL, Swaney SM, Colca JR et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol. Cell.26, 393–402 (2007).
  • Pogue JM, Paterson DL, Pasculle AW, Potoski BA. Determination of risk factors associated with isolation of linezolid-resistant strains of vancomycin-resistant Enterococcus. Infect. Control. Hosp. Epidemiol.28, 1382–1388 (2007).
  • Burleson BS, Ritchie DJ, Micek ST, Dunne WM. Enterococcus faecalis resistant to linezolid: case series and review of the literature. Pharmacotherapy24, 1225–1231 (2004).
  • Herrero IA, Issa NC, Patel R. Nosocomial spread of linezolid-resistant, vancomycin-resistant Enterococcus faecium. N. Engl. J. Med.346, 867–869 (2002).
  • Dobbs TE, Patel M, Waites KB, Moser SA, Stamm AM, Hoesley CJ. Nosocomial spread of Enterococcus faecium resistant to vancomycin and linezolid in a tertiary care medical center. J. Clin. Microbiol.44, 3368–3370 (2006).
  • Rahim S, Pillai SK, Gold HS, Venkataraman L, Inglima K, Press RA. Linezolid-resistant, vancomycin-resistant Enterococcus faecium infection in patients without prior exposure to linezolid. Clin. Infect. Dis.36, E146–E148 (2003).
  • Bonora MG, Solbiati M, Stepan E et al. Emergence of linezolid resistance in the vancomycin-resistant Enterococcus faecium multilocus sequence typing C1 epidemic lineage. J. Clin. Microbiol.44, 1153–1155 (2006).
  • Kainer MA, Devasia RA, Jones TF et al. Response to emerging infection leading to outbreak of linezolid-resistant enterococci. Emerg. Infect. Dis.13, 1024–1030 (2007).
  • Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet357, 1179 (2001).
  • Raad II, Hanna HA, Hachem RY et al. Clinical-use-associated decrease in susceptibility of vancomycin-resistant Enterococcus faecium to linezolid: a comparison with quinupristin–dalfopristin. Antimicrob. Agents Chemother.48, 3583–3585 (2004).
  • Tsiodras S, Gold HS, Sakoulas G et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet358, 207–208 (2001).
  • Prystowsky J, Siddiqui F, Chosay J et al. Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob. Agents Chemother.45, 2154–2156 (2001).
  • Zurenko GE, Yagi BH, Schaadt RD et al.In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother.40, 839–845 (1996).
  • Marshall SH, Donskey CJ, Hutton-Thomas R, Salata RA, Rice LB. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother.46, 3334–3336 (2002).
  • Ruggero KA, Schroeder LK, Schreckenberger PC, Mankin AS, Quinn JP. Nosocomial superinfections due to linezolid-resistant Enterococcus faecalis : evidence for a gene dosage effect on linezolid MICs. Diagn. Microbiol. Infect. Dis.47, 511–513 (2003).
  • Lobritz M, Hutton-Thomas R, Marshall S, Rice LB. Recombination proficiency influences frequency and locus of mutational resistance to linezolid in Enterococcus faecalis. Antimicrob. Agents Chemother.47, 3318–3320 (2003).
  • Bourgeois-Nicolaos N, Massias L, Couson B, Butel MJ, Andremont A, Doucet-Populaire F. Dose dependence of emergence of resistance to linezolid in Enterococcus faecalisin vivo. J. Infect. Dis.195, 1480–1488 (2007).
  • Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob. Agents Chemother.50, 2500–2505 (2006).
  • Toh SM, Xiong L, Arias CA et al. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol. Microbiol.64, 1506–1514 (2007).
  • Arias CA, Vallejo M, Reyes J et al. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase. J. Clin. Microbiol.46, 892–896 (2008).
  • Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol–florfenicol resistance gene in Staphylococcus sciuri. Antimicrob. Agents Chemother.44, 2530–2533 (2000).
  • Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol. Microbiol.57, 1064–1073 (2005).
  • Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob. Agents Chemother.52, 2244–2246 (2008).
  • Falagas ME, Siempos, II, Vardakas KZ. Linezolid versus glycopeptide or β-lactam for treatment of Gram-positive bacterial infections: meta-analysis of randomised controlled trials. Lancet Infect. Dis.8, 53–66 (2008).
  • Birmingham MC, Rayner CR, Meagher AK, Flavin SM, Batts DH, Schentag JJ. Linezolid for the treatment of multidrug-resistant, Gram-positive infections: experience from a compassionate-use program. Clin. Infect. Dis.36, 159–168 (2003).
  • Tsigrelis C, Singh KV, Coutinho TD, Murray BE, Baddour LM. Vancomycin-resistant Enterococcus faecalis endocarditis: linezolid failure and strain characterization of virulence factors. J. Clin. Microbiol.45, 631–635 (2007).
  • Wareham DW, Abbas H, Karcher AM, Das SS. Treatment of prosthetic valve infective endocarditis due to multi-resistant Gram-positive bacteria with linezolid. J. Infect.52, 300–304 (2006).
  • Hamza N, Ortiz J, Bonomo RA. Isolated pulmonic valve infective endocarditis: a persistent challenge. Infection32, 170–175 (2004).
  • Zimmer SM, Caliendo AM, Thigpen MC, Somani J. Failure of linezolid treatment for enterococcal endocarditis. Clin. Infect. Dis.37, e29–e30 (2003).
  • Rao N, White GJ. Successful treatment of Enterococcus faecalis prosthetic valve endocarditis with linezolid. Clin. Infect. Dis.35, 902–904 (2002).
  • Archuleta S, Murphy B, Keller MJ. Successful treatment of vancomycin-resistant Enterococcus faecium endocarditis with linezolid in a renal transplant recipient with human immunodeficiency virus infection. Transpl. Infect. Dis.6, 117–119 (2004).
  • Ang JY, Lua JL, Turner DR, Asmar BI. Vancomycin-resistant Enterococcus faecium endocarditis in a premature infant successfully treated with linezolid. Pediatr. Infect. Dis. J.22, 1101–1103 (2003).
  • Babcock HM, Ritchie DJ, Christiansen E, Starlin R, Little R, Stanley S. Successful treatment of vancomycin-resistant Enterococcus endocarditis with oral linezolid. Clin. Infect. Dis.32, 1373–1375 (2001).
  • Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant Gram-positive bacterial infections. Clin. Infect. Dis.30, 146–151 (2000).
  • Falagas ME, Manta KG, Ntziora F, Vardakas KZ. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J. Antimicrob. Chemother.58, 273–280 (2006).
  • Baddour LM, Wilson WR, Bayer AS et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation111, e394–e434 (2005).
  • Stein GE, Craig WA. Tigecycline: a critical analysis. Clin. Infect. Dis.43, 518–524 (2006).
  • Rossi F, Andreazzi D. Overview of tigecycline and its role in the era of antibiotic resistance. Braz. J. Infect. Dis.10, 203–216 (2006).
  • Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev.65, 232–260 (2001).
  • Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother.47, 3675–3681 (2003).
  • Speer BS, Salyers AA. Novel aerobic tetracycline resistance gene that chemically modifies tetracycline. J. Bacteriol.171, 148–153 (1989).
  • Gerrits MM, de Zoete MR, Arents NL, Kuipers EJ, Kusters JG. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother.46, 2996–3000 (2002).
  • Ross JI, Eady EA, Cove JH, Cunliffe WJ. 16S rRNA mutation associated with tetracycline resistance in a Gram-positive bacterium. Antimicrob. Agents Chemother.42, 1702–1705 (1998).
  • Trieber CA, Taylor DE. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J. Bacteriol.184, 2131–2140 (2002).
  • Projan SJ. Preclinical pharmacology of GAR-936, a novel glycylcycline antibacterial agent. Pharmacotherapy20, 219S–223S (2000).
  • Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob. Agents Chemother.48, 2179–2184 (2004).
  • Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P. AdeIJK, a resistance–nodulation–cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob. Agents Chemother.52, 557–562 (2008).
  • Moore IF, Hughes DW, Wright GD. Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry44, 11829–11835 (2005).
  • Mahamoud A, Chevalier J, Alibert-Franco S, Kern WV, Pages JM. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J. Antimicrob. Chemother.59, 1223–1229 (2007).
  • Werner G, Gfrorer S, Fleige C, Witte W, Klare I. Tigecycline-resistant Enterococcus faecalis strain isolated from a German intensive care unit patient. J. Antimicrob. Chemother.61, 1182–1183 (2008).
  • Murphy TM, Deitz JM, Petersen PJ, Mikels SM, Weiss WJ. Therapeutic efficacy of GAR-936, a novel glycylcycline, in a rat model of experimental endocarditis. Antimicrob. Agents Chemother.44, 3022–3027 (2000).
  • Lefort A, Lafaurie M, Massias L et al. Activity and diffusion of tigecycline (GAR-936) in experimental enterococcal endocarditis. Antimicrob. Agents Chemother.47, 216–222 (2003).
  • Nannini EC, Pai SR, Singh KV, Murray BE. Activity of tigecycline (GAR-936), a novel glycylcycline, against enterococci in the mouse peritonitis model. Antimicrob. Agents Chemother.47, 529–532 (2003).
  • Ellis-Grosse EJ, Babinchak T, Dartois N, Rose G, Loh E. The efficacy and safety of tigecycline in the treatment of skin and skin-structure infections: results of 2 double-blind Phase 3 comparison studies with vancomycin–aztreonam. Clin. Infect. Dis.41(Suppl. 5) S341–S353 (2005).
  • Babinchak T, Ellis-Grosse E, Dartois N, Rose GM, Loh E. The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: analysis of pooled clinical trial data. Clin. Infect. Dis.41(Suppl. 5) S354–S367 (2005).
  • Anthony KB, Fishman NO, Linkin DR, Gasink LB, Edelstein PH, Lautenbach E. Clinical and microbiological outcomes of serious infections with multidrug-resistant Gram-negative organisms treated with tigecycline. Clin. Infect. Dis.46, 567–570 (2008).
  • Peleg AY, Potoski BA, Rea R et al.Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J. Antimicrob. Chemother.59, 128–131 (2007).
  • Reid GE, Grim SA, Aldeza CA, Janda WM, Clark NM. Rapid development of Acinetobacter baumannii resistance to tigecycline. Pharmacotherapy27, 1198–1201 (2007).
  • Hershberger E, Donabedian S, Konstantinou K, Zervos MJ. Quinupristin–dalfopristin resistance in Gram-positive bacteria: mechanism of resistance and epidemiology. Clin. Infect. Dis.38, 92–98 (2004).
  • Dowzicky M, Nadler HL, Feger C, Talbot G, Bompart F, Pease M. Evaluation of in vitro activity of quinupristin/dalfopristin and comparator antimicrobial agents against worldwide clinical trial and other laboratory isolates. Am. J. Med.104, 34S–42S (1998).
  • Harms JM, Schlunzen F, Fucini P, Bartels H, Yonath A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol.2, 4 (2004).
  • Beyer D, Pepper K. The streptogramin antibiotics: update on their mechanism of action. Expert Opin. Investig. Drugs7, 591–599 (1998).
  • Vannuffel P, Cocito C. Mechanism of action of streptogramins and macrolides. Drugs51(Suppl. 1), 20–30 (1996).
  • Singh KV, Weinstock GM, Murray BE.An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin–dalfopristin. Antimicrob. Agents Chemother.46, 1845–1850 (2002).
  • Dina J, Malbruny B, Leclercq R. Nonsense mutations in the lsa-like gene in Enterococcus faecalis isolates susceptible to lincosamides and streptogramins A. Antimicrob. Agents Chemother.47, 2307–2309 (2003).
  • Petinaki E, Kontos F, Maniatis AN, Spiliopoulou I, Liakos P. Emergence of Enterococcus faecalis susceptible to quinupristin/dalfopristin in Greece. Int. J. Antimicrob. Agents28, 153–156 (2006).
  • Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother.35, 1267–1272 (1991).
  • Fantin B, Leclercq R, Garry L, Carbon C. Influence of inducible cross-resistance to macrolides, lincosamides, and streptogramin B-type antibiotics in Enterococcus faecium on activity of quinupristin–dalfopristin in vitro and in rabbits with experimental endocarditis. Antimicrob. Agents Chemother.41, 931–935 (1997).
  • Fantin B, Leclercq R, Ottaviani M et al.In vivo activities and penetration of the two components of the streptogramin RP 59500 in cardiac vegetations of experimental endocarditis. Antimicrob. Agents Chemother.38, 432–437 (1994).
  • Werner G, Witte W. Characterization of a new enterococcal gene, satG, encoding a putative acetyltransferase conferring resistance to streptogramin A compounds. Antimicrob. Agents Chemother.43, 1813–1814 (1999).
  • Soltani M, Beighton D, Philpott-Howard J, Woodford N. Identification of vat(E-3), a novel gene encoding resistance to quinupristin–dalfopristin in a strain of Enterococcus faecium from a hospital patient in the United Kingdom. Antimicrob. Agents Chemother.45, 645–646 (2001).
  • Jensen LB, Hammerum AM, Aerestrup FM, van den Bogaard AE, Stobberingh EE. Occurrence of satA and vgb genes in streptogramin-resistant Enterococcus faecium isolates of animal and human origins in The Netherlands. Antimicrob. Agents Chemother.42, 3330–3331 (1998).
  • Werner G, Klare I, Witte W. Association between quinupristin/dalfopristin resistance in glycopeptide-resistant Enterococcus faecium and the use of additives in animal feed. Eur. J. Clin. Microbiol. Infect. Dis.17, 401–402 (1998).
  • Singh KV, Murray BE. Differences in the Enterococcus faecalis lsa locus that influence susceptibility to quinupristin–dalfopristin and clindamycin. Antimicrob. Agents Chemother.49, 32–39 (2005).
  • Moellering RC, Linden PK, Reinhardt J, Blumberg EA, Bompart F, Talbot GH. The efficacy and safety of quinupristin/dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. Synercid Emergency-Use Study Group. J. Antimicrob. Chemother.44, 251–261 (1999).
  • Linden PK, Moellering RC Jr, Wood CA et al. Treatment of vancomycin-resistant Enterococcus faecium infections with quinupristin/dalfopristin. Clin. Infect. Dis.33, 1816–1823 (2001).
  • Matsumura S, Simor AE. Treatment of endocarditis due to vancomycin-resistant Enterococcus faecium with quinupristin/dalfopristin, doxycycline, and rifampin: a synergistic drug combination. Clin. Infect. Dis.27, 1554–1556 (1998).
  • Thompson RL, Lavin B, Talbot GH. Endocarditis due to vancomycin-resistant Enterococcus faecium in an immunocompromised patient: cure by administering combination therapy with quinupristin/dalfopristin and high-dose ampicillin. South. Med. J.96, 818–820 (2003).
  • Schneider P, Hawser S, Islam K. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg. Med. Chem. Lett.13, 4217–4221 (2003).
  • Hawser S, Lociuro S, Islam K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol.71, 941–948 (2006).
  • Zervos MJ, Schaberg DR. Reversal of the in vitro susceptibility of enterococci to trimethoprim–sulfamethoxazole by folinic acid. Antimicrob. Agents Chemother.28, 446–448 (1985).
  • Marder HP, Kayser FH. Transferable plasmids mediating multiple-antibiotic resistance in Streptococcus faecalis subsp. liquefaciens. Antimicrob. Agents Chemother.12, 261–269 (1977).
  • Ricaurte JC, Boucher HW, Turett GS, Moellering RC, Labombardi VJ, Kislak JW. Chloramphenicol treatment for vancomycin-resistant Enterococcus faecium bacteremia. Clin. Microbiol. Infect.7, 17–21 (2001).
  • Lautenbach E, Schuster MG, Bilker WB, Brennan PJ. The role of chloramphenicol in the treatment of bloodstream infection due to vancomycin-resistant Enterococcus. Clin. Infect. Dis.27, 1259–1265 (1998).
  • Safdar A, Bryan CS, Stinson S, Saunders DE. Prosthetic valve endocarditis due to vancomycin-resistant Enterococcus faecium : treatment with chloramphenicol plus minocycline. Clin. Infect. Dis.34, E61–E63 (2002).
  • Moreno F, Jorgensen JH, Weiner MH. An old antibiotic for a new multiple-resistant Enterococcus faecium? Diagn. Microbiol. Infect. Dis.20, 41–43 (1994).
  • Sacher HL, Miller WC, Landau SW, Sacher ML, Dixon WA, Dietrich KA. Relapsing native-valve enterococcal endocarditis: a unique cure with oral ciprofloxacin combination drug therapy. J. Clin. Pharmacol.31, 719–721 (1991).
  • Tripodi MF, Locatelli A, Adinolfi LE, Andreana A, Utili R. Successful treatment with ampicillin and fluoroquinolones of human endocarditis due to high-level gentamicin-resistant enterococci. Eur. J. Clin. Microbiol. Infect. Dis.17, 734–736 (1998).
  • Landman D, Quale JM, Mobarakai N, Zaman MM. Ampicillin plus ciprofloxacin therapy of experimental endocarditis caused by multidrug-resistant Enterococcus faecium. J. Antimicrob. Chemother.36, 253–258 (1995).
  • van Nieuwkoop C, Visser LG, Groeneveld JH, Kuijper EJ. Chronic bacterial prostatitis and relapsing Enterococcus faecalis bacteraemia successfully treated with moxifloxacin. J. Infect.56, 155–156 (2008).
  • Whitman MS, Pitsakis PG, Zausner A et al. Antibiotic treatment of experimental endocarditis due to vancomycin- and ampicillin-resistant Enterococcus faecium. Antimicrob. Agents Chemother.37, 2069–2073 (1993).
  • Drobot GR, Karlowsky JA, Hoban DJ, Zhanel GG. Antibiotic activity in microbiological media versus that in human urine: comparison of ampicillin, ciprofloxacin, and trimethoprim–sulfamethoxazole. Antimicrob. Agents Chemother.40, 237–240 (1996).
  • Gupta K, Hooton TM, Roberts PL, Stamm WE. Short-course nitrofurantoin for the treatment of acute uncomplicated cystitis in women. Arch. Intern. Med.167, 2207–2212 (2007).
  • McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and implications for resistance development in common uropathogens. J. Antimicrob. Chemother.33(Suppl. A), 23–30 (1994).
  • Panesso D, Ospina S, Robledo J et al. First characterization of a cluster of VanA-type glycopeptide-resistant Enterococcus faecium, Colombia. Emerg. Infect. Dis.8, 961–965 (2002).
  • Fuchs PC, Barry AL, Brown SD. Fosfomycin tromethamine susceptibility of outpatient urine isolates of Escherichia coli and Enterococcus faecalis from ten North American medical centres by three methods. J. Antimicrob. Chemother.43, 137–140 (1999).
  • van Heijenoort J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep.18, 503–519 (2001).
  • Perri MB, Hershberger E, Ionescu M, Lauter C, Zervos MJ. In vitro susceptibility of vancomycin-resistant enterococci (VRE) to fosfomycin. Diagn. Microbiol. Infect. Dis.42, 269–271 (2002).
  • Shrestha NK, Chua JD, Tuohy MJ et al. Antimicrobial susceptibility of vancomycin-resistant Enterococcus faecium: potential utility of fosfomycin. Scand. J. Infect. Dis.35, 12–14 (2003).
  • Nallapareddy SR, Wenxiang H, Weinstock GM, Murray BE. Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. J. Bacteriol.187, 5709–5718 (2005).
  • Willems RJ, Homan W, Top J et al. Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet357, 853–855 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.