307
Views
77
CrossRef citations to date
0
Altmetric
Review

Multiresistant Enterobacteriaceae: new threat of an old problem

Pages 657-669 | Published online: 10 Jan 2014

References

  • Talbot GH, Bradley J, Edwards JE Jr, Gilbert D, Scheld M, Bartlett JG. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis.42(5), 657–668 (2006).
  • Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Carmeli Y. Clinical and economic impact of bacteremia with extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother.50(4), 1257–1262 (2006).
  • Paterson DL. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control34(5 Suppl. 1), S20–S28 (2006).
  • Livermore DM, Woodford N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol.14(9), 413–420 (2006).
  • Jacoby GA, Munoz-Price LS. The new β-lactamases. N. Engl. J. Med.352(4), 380–391 (2005).
  • Jacoby GA. Mechanisms of resistance to quinolones. Clin. Infect. Dis.41(Suppl. 2), S120–S126 (2005).
  • Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev.18(4), 657–686 (2005).
  • Gniadkowski M. Evolution of extended-spectrum β-lactamases by mutation. Clin. Microbiol. Infect.14(Suppl. 1), 11–32 (2008).
  • Perez F, Endimiani A, Hujer KM, Bonomo RA. The continuing challenge of ESBLs. Curr. Opin. Pharmacol.7(5), 459–469 (2007).
  • Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis.8(3), 159–166 (2008).
  • Livermore DM, Canton R, Gniadkowski M et al. CTX-M: changing the face of ESBLs in Europe. J. Antimicrob. Chemother.59(2), 165–174 (2007).
  • Canton R, Coque TM. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol.9(5), 466–475 (2006).
  • Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect.14(Suppl. 1), 33–41 (2008).
  • Coque TM, Novais A, Carattoli A et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg. Infect. Dis.14(2), 195–200 (2008).
  • Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother.61(2), 273–281 (2008).
  • Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J. Antimicrob. Chemother.56(1), 52–59 (2005).
  • Pitout JD, Hanson ND, Church DL, Laupland KB. Population-based laboratory surveillance for Escherichia coli-producing extended-spectrum β-lactamases: importance of community isolates with blaCTX-M genes. Clin. Infect. Dis.38(12), 1736–1741 (2004).
  • Woodford N, Ward ME, Kaufmann ME et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J. Antimicrob. Chemother.54(4), 735–743 (2004).
  • Oteo J, Navarro C, Cercenado E et al. Spread of Escherichia coli strains with high-level cefotaxime and ceftazidime resistance between the community, long-term care facilities, and hospital institutions. J. Clin. Microbiol.44(7), 2359–2366 (2006).
  • Mugnaioli C, Luzzaro F, De Luca F et al. CTX-M-type extended-spectrum β-lactamases in Italy: molecular epidemiology of an emerging countrywide problem. Antimicrob. Agents Chemother.50(8), 2700–2706 (2006).
  • Quinteros M, Radice M, Gardella N et al. Extended-spectrum β-lactamases in enterobacteriaceae in Buenos Aires, Argentina, public hospitals. Antimicrob. Agents Chemother.47(9), 2864–2867 (2003).
  • Mulvey MR, Bryce E, Boyd D et al. Ambler class A extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella spp. in Canadian hospitals. Antimicrob. Agents Chemother.48(4), 1204–1214 (2004).
  • Pitout JD, Church DL, Gregson DB et al. Molecular epidemiology of CTX-M-producing Escherichia coli in the calgary health region: emergence of CTX-M-15-producing isolates. Antimicrob. Agents Chemother.51(4), 1281–1286 (2007).
  • Tumbarello M, Sanguinetti M, Montuori E et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother.51(6), 1987–1994 (2007).
  • Nicolas-Chanoine MH, Jarlier V. Extended-spectrum β -lactamases in long-term-care facilities. Clin. Microbiol. Infect.14(Suppl. 1), 111–116 (2008).
  • Rodriguez-Bano J, Navarro MD. Extended-spectrum β-lactamases in ambulatory care: a clinical perspective. Clin. Microbiol. Infect.14(Suppl. 1), 104–110 (2008).
  • Ben-Ami R, Schwaber MJ, Navon-Venezia S et al. Influx of extended-spectrum β-lactamase-producing enterobacteriaceae into the hospital. Clin. Infect. Dis.42(7), 925–934 (2006).
  • Rodriguez-Bano J, Navarro MD, Romero L et al. Risk-factors for emerging bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Clin. Microbiol. Infect.14(2), 180–183 (2008).
  • Rodriguez-Bano J, Navarro MD, Romero L et al. Bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin. Infect. Dis.43(11), 1407–1414 (2006).
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 18th Informational Supplement M100-S18. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2008).
  • Wiegand I, Geiss HK, Mack D, Sturenburg E, Seifert H. Detection of extended-spectrum β-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures. J. Clin. Microbiol.45(4), 1167–1174 (2007).
  • Navon-Venezia S, Leavitt A, Ben-Ami R et al. Evaluation of an accelerated protocol for detection of extended-spectrum β-lactamase-producing Gram-negative bacilli from positive blood cultures. J. Clin. Microbiol.43(1), 439–441 (2005).
  • Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin. Microbiol. Infect.14(Suppl. 1), 90–103 (2008).
  • Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev.20(3), 440–458 (2007).
  • Walther-Rasmussen J, Hoiby N. Class A carbapenemases. J. Antimicrob. Chemother.60(3), 470–482 (2007).
  • Bratu S, Brooks S, Burney S et al. Detection and spread of Escherichia coli possessing the plasmid-borne carbapenemase KPC-2 in Brooklyn, New York. Clin. Infect. Dis.44(7), 972–975 (2007).
  • Chiang T, Mariano N, Urban C et al. Identification of carbapenem-resistant Klebsiella pneumoniae harboring KPC enzymes in New Jersey. Microb. Drug Resist.13(4), 235–239 (2007).
  • Lomaestro BM, Tobin EH, Shang W, Gootz T. The spread of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae to upstate New York. Clin. Infect. Dis.43(3), E26–E28 (2006).
  • Deshpande LM, Rhomberg PR, Sader HS, Jones RN. Emergence of serine carbapenemases (KPC and SME) among clinical strains of Enterobacteriaceae isolated in the United States medical centers: report from the MYSTIC Program (1999–2005). Diagn. Microbiol. Infect. Dis.56(4), 367–372 (2006).
  • Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob. Agents Chemother.52(4), 1257–1263 (2008).
  • Endimiani A, Carias LL, Hujer AM et al. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United States. Antimicrob. Agents Chemother.52(7), 2680–2682 (2008).
  • Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol.2(5), 501–512 (2007).
  • Bratu S, Landman D, Haag R et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch. Intern. Med.165(12), 1430–1435 (2005).
  • Bradford PA, Bratu S, Urban C et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin. Infect. Dis.39(1), 55–60 (2004).
  • Bratu S, Mooty M, Nichani S et al. Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob. Agents Chemother.49(7), 3018–3020 (2005).
  • Leavitt A, Navon-Venezia S, Chmelnitsky I, Schwaber MJ, Carmeli Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob. Agents Chemother.51(8), 3026–3029 (2007).
  • Bratu S, Tolaney P, Karumudi U et al. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J. Antimicrob. Chemother.56(1), 128–132 (2005).
  • Castanheira M, Sader HS, Deshpande LM, Fritsche TR, Jones RN. Antimicrobial activities of tigecycline and other broad-spectrum antimicrobials tested against serine carbapenemase- and metallo-β-lactamase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother.52(2), 570–573 (2008).
  • Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000–2004). Microb. Drug Resist.12(4), 223–230 (2006).
  • Woodford N, Tierno PM Jr, Young K et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother.48(12), 4793–4799 (2004).
  • Samra Z, Ofir O, Lishtzinsky Y, Madar-Shapiro L, Bishara J. Outbreak of carbapenem-resistant Klebsiella pneumoniae producing KPC-3 in a tertiary medical centre in Israel. Int. J. Antimicrob. Agents30(6), 525–529 (2007).
  • Marchaim D, Navon-Venezia S, Schwaber MJ, Carmeli Y. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob. Agents Chemother.52(4), 1413–1418 (2008).
  • Urban C, Bradford PA, Tuckman M et al. Carbapenem-resistant Escherichia coli harboring Klebsiella pneumoniae carbapenemase β-lactamases associated with long-term care facilities. Clin. Infect. Dis.46(11), E127–E130 (2008).
  • Anderson KF, Lonsway DR, Rasheed JK et al. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J. Clin. Microbiol.45(8), 2723–2725 (2007).
  • Tenover FC, Kalsi RK, Williams PP et al. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg. Infect. Dis.12(8), 1209–1213 (2006).
  • Marchiaro P, Ballerini V, Spalding T et al. A convenient microbiological assay employing cell-free extracts for the rapid characterization of Gram-negative carbapenemase producers. J. Antimicrob. Chemother.62(2), 336–344 (2008).
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev.18(2), 306–325 (2005).
  • Gupta V. Metallo β lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin. Investig. Drugs17(2), 131–143 (2008).
  • Kassis-Chikhani N, Decre D, Gautier V et al. First outbreak of multidrug-resistant Klebsiella pneumoniae carrying blaVIM-1 and blaSHV-5 in a French University Hospital. J. Antimicrob. Chemother.57(1), 142–145 (2006).
  • Vatopoulos A. High rates of metallo-β-lactamase-producing Klebsiella pneumoniae in Greece – a review of the current evidence. Euro Surveill.13(4), pii: 8023 (2008).
  • Yong D, Choi YS, Roh KH et al. Increasing prevalence and diversity of metallo-β-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea. Antimicrob. Agents Chemother.50(5), 1884–1886 (2006).
  • Psichogiou M, Tassios PT, Avlamis A et al. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J. Antimicrob. Chemother.61(1), 59–63 (2008).
  • Tato M, Coque TM, Ruiz-Garbajosa P et al. Complex clonal and plasmid epidemiology in the first outbreak of Enterobacteriaceae infection involving VIM-1 metallo-β-lactamase in Spain: toward endemicity? Clin. Infect. Dis.45(9), 1171–1178 (2007).
  • Cagnacci S, Gualco L, Roveta S et al. Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolyzing VIM-1 metallo-β-lactamase: first Italian outbreak. J. Antimicrob. Chemother.61(2), 296–300 (2008).
  • Peleg AY, Franklin C, Bell JM, Spelman DW. Dissemination of the metallo-β-lactamase gene blaIMP-4 among Gram-negative pathogens in a clinical setting in Australia. Clin. Infect. Dis.41(11), 1549–1556 (2005).
  • Souli M, Kontopidou FV, Papadomichelakis E, Galani I, Armaganidis A, Giamarellou H. Clinical experience of serious infections caused by Enterobacteriaceae producing VIM-1 metallo-β-lactamase in a Greek University Hospital. Clin. Infect. Dis.46(6), 847–854 (2008).
  • Cornaglia G, Akova M, Amicosante G et al. Metallo-β-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int. J. Antimicrob. Agents29(4), 380–388 (2007).
  • Petropoulou D, Tzanetou K, Syriopoulou VP, Daikos GL, Ganteris G, Malamou-Lada E. Evaluation of imipenem/imipenem+EDTA disk method for detection of metallo-β-lactamase-producing Klebsiella pneumoniae isolated from blood cultures. Microb. Drug Resist.12(1), 39–43 (2006).
  • Mendes RE, Kiyota KA, Monteiro J et al. Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve ana­lysis. J. Clin. Microbiol.45(2), 544–547 (2007).
  • Hanson ND. AmpC β-lactamases: what do we need to know for the future? J. Antimicrob. Chemother.52(1), 2–4 (2003).
  • Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother.46(1), 1–11 (2002).
  • Forward KR, Willey BM, Low DE et al. Molecular mechanisms of cefoxitin resistance in Escherichia coli from the Toronto area hospitals. Diagn. Microbiol. Infect. Dis.41(1–2), 57–63 (2001).
  • Ding H, Yang Y, Lu Q et al. The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China. Eur. J. Clin. Microbiol. Infect. Dis. PMID: 18449580 (2008) (Epub ahead of print).
  • Li Y, Li Q, Du Y et al. Prevalence of plasmid-mediated AmpC β-lactamases in a Chinese University Hospital from 2003 to 2005: first report of CMY-2-type AmpC β-lactamase resistance in China. J. Clin. Microbiol.46(4), 1317–1321 (2008).
  • Moland ES, Hanson ND, Black JA, Hossain A, Song W, Thomson KS. Prevalence of newer β-lactamases in Gram-negative clinical isolates collected in the United States from 2001 to 2002. J. Clin. Microbiol.44(9), 3318–3324 (2006).
  • Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence of plasmidic AmpC type β-lactamase-mediated resistance in Escherichia coli: report from the SENTRY Antimicrobial Surveillance Program (North America, 2004). Int. J. Antimicrob. Agents28(6), 578–581 (2006).
  • Woodford N, Reddy S, Fagan EJ et al. Wide geographic spread of diverse acquired AmpC β-lactamases among Escherichia coli and Klebsiella spp. in the UK and Ireland. J. Antimicrob. Chemother.59(1), 102–105 (2007).
  • Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob. Agents Chemother.48(2), 533–537 (2004).
  • Mulvey MR, Bryce E, Boyd DA et al. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob. Agents Chemother.49(1), 358–365 (2005).
  • Mocktar C, Govinden U, Sturm AW, Essack SY. CMY-20, a novel AmpC-type β-lactamase from South African clinical Escherichia coli isolates. Diagn. Microbiol. Infect. Dis.60(4), 405–408 (2008).
  • Pai H, Kang CI, Byeon JH et al. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β-lactamase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother.48(10), 3720–3728 (2004).
  • Varma JK, Marcus R, Stenzel SA et al. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case–control study of sporadic Salmonella Newport infections, 2002–2003. J. Infect. Dis.194(2), 222–230 (2006).
  • Pitout JD, Gregson DB, Church DL, Laupland KB. Population-based laboratory surveillance for AmpC β-lactamase-producing Escherichia coli, Calgary. Emerg. Infect. Dis.13(3), 443–448 (2007).
  • Doi Y, Paterson DL. Detection of plasmid-mediated class C β-lactamases. Int. J. Infect. Dis.11(3), 191–197 (2007).
  • Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J. Clin. Microbiol.43(8), 4163–4167 (2005).
  • Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol.40(6), 2153–2162 (2002).
  • Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother.56(3), 463–469 (2005).
  • Cattoir V, Nordmann P, Silva-Sanchez J, Espinal P, Poirel L. ISEcp1-mediated transposition of qnrB-like gene in Escherichia coli. Antimicrob. Agents Chemother. (2008).
  • Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis.6(10), 629–640 (2006).
  • Cattoir V, Poirel L, Mazel D, Soussy CJ, Nordmann P. Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants. Antimicrob. Agents Chemother.51(7), 2650–2651 (2007).
  • Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother.49(8), 3523–3525 (2005).
  • Robicsek A, Strahilevitz J, Jacoby GA et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med.12(1), 83–88 (2006).
  • Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob. Agents Chemother.51(7), 2464–2469 (2007).
  • Yamane K, Wachino J, Suzuki S et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother.51(9), 3354–3360 (2007).
  • Oteo J, Lazaro E, de Abajo FJ, Baquero F, Campos J. Antimicrobial-resistant invasive Escherichia coli, Spain. Emerg. Infect. Dis.11(4), 546–553 (2005).
  • Paterson DL, Rossi F, Baquero F et al.In vitro susceptibilities of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: the 2003 Study for Monitoring Antimicrobial Resistance Trends (SMART). J. Antimicrob. Chemother.55(6), 965–973 (2005).
  • Ling TK, Xiong J, Yu Y, Lee CC, Ye H, Hawkey PM. Multicenter antimicrobial susceptibility survey of Gram-negative bacteria isolated from patients with community-acquired infections in the People’s Republic of China. Antimicrob. Agents Chemother.50(1), 374–378 (2006).
  • Poirel L, Leviandier C, Nordmann P. Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French University Hospital. Antimicrob. Agents Chemother.50(12), 3992–3997 (2006).
  • Robicsek A, Sahm DF, Strahilevitz J, Jacoby GA, Hooper DC. Broader distribution of plasmid-mediated quinolone resistance in the United States. Antimicrob. Agents Chemother.49(7), 3001–3003 (2005).
  • Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. Qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother.50(8), 2872–2874 (2006).
  • Rodriguez-Martinez JM, Pascual A, Garcia I, Martinez-Martinez L. Detection of the plasmid-mediated quinolone resistance determinant Qnr among clinical isolates of Klebsiella pneumoniae producing AmpC-type β-lactamase. J. Antimicrob. Chemother.52(4), 703–706 (2003).
  • Wu JJ, Ko WC, Tsai SH, Yan JJ. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob. Agents Chemother.51(4), 1223–1227 (2007).
  • Rodriguez-Martinez JM, Poirel L, Pascual A, Nordmann P. Plasmid-mediated quinolone resistance in Australia. Microb. Drug Resist.12(2), 99–102 (2006).
  • Pitout JD, Wei Y, Church DL, Gregson DB. Surveillance for plasmid-mediated quinolone resistance determinants in Enterobacteriaceae within the Calgary Health Region, Canada: the emergence of aac(6´)-Ib-cr. J. Antimicrob. Chemother.61(5), 999–1002 (2008).
  • Poirel L, Pitout JD, Calvo L, Rodriguez-Martinez JM, Church D, Nordmann P. In vivo selection of fluoroquinolone-resistant Escherichia coli isolates expressing plasmid-mediated quinolone resistance and expanded-spectrum β-lactamase. Antimicrob. Agents Chemother.50(4), 1525–1527 (2006).
  • Poirel L, Cattoir V, Nordmann P. Is plasmid-mediated quinolone resistance a clinically significant problem? Clin. Microbiol. Infect.14(4), 295–297 (2008).
  • Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother.60(2), 394–397 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.