414
Views
77
CrossRef citations to date
0
Altmetric
Review

Antibiotic resistance in the absence of antimicrobial use: mechanisms and implications

, , &
Pages 725-732 | Published online: 10 Jan 2014

References

  • Norrby SR, Nord CE, Finch R; European Society of Clinical Microbiology and Infectious Diseases. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect. Dis.5, 115–119 (2005).
  • Spellberg B, Guidos R, Gilbert D et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis.46, 155–164 (2008).
  • Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell128, 1037–1050 (2007).
  • Seppala H, Klaukka T, Lehtonen R, Nenonen E, Huovinen P. Outpatient use of erythromycin: link to increased erythromycin resistance in group A streptococci. Clin. Infect. Dis.21, 1378–1385 (1995).
  • Goossens H, Ferech M, Vander Stichele R, Elseviers M and the ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet365, 579–587 (2005).
  • Goettsch W, van Pelt W, Nagelkerke N et al. Increasing resistance to fluoroquinolones in Escherichia coli from urinary tract infections in The Netherlands. J. Antimicrob. Chemother.46, 223–228 (2000).
  • Gasink LB, Fishman NO, Weiner MG, Nachamkin I, Bilker WB, Lautenbach E. Fluoroquinolone-resistant Pseudomonas aeruginosa: assessment of risk factors and clinical impact. Am. J. Med.119, 526. e19–e25 (2006).
  • Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev.18, 657–686 (2005).
  • Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis.8, 159–166 (2008).
  • Lepper PM, Grusa E, Reichl H, Högel J, Trautmann M. Consumption of imipenem correlates with β-lactam resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.46, 2920–2925 (2002).
  • Scheetz MH, Knechtel SA, Malczynski M, Postelnick MJ, Qi C. Increasing incidence of linezolid-intermediate or -resistant, vancomycin-resistant Enterococcus faecium strains parallels increasing linezolid consumption. Antimicrob. Agents Chemother.52, 2256–2259 (2008).
  • Seppala H, Klaukka T, Vuopio-Varkila J et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N. Engl. J. Med.337, 441–446 (1997).
  • Nowak R. Hungary sees an improvement in penicillin resistance. Science264, 364 (1994).
  • Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc. Natl Acad. Sci. USA96, 1152–1156 (1999).
  • Guillemot D, Varon E, Bernede C et al. Reduction of antibiotic use in the community reduces the rate of colonization with penicillin G-nonsusceptible Streptococcus pneumoniae. Clin. Infect. Dis.41, 930–938 (2005).
  • Hughes VM, Datta N. Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature302, 725–726 (1983).
  • Mare IJ. Incidence of R factors among Gram negative bacteria in drug-free human and animal communities. Nature220, 1046–1047 (1968).
  • Walson JL, Marshall B, Pokhrel BM, Kafle KK, Levy SB. Carriage of antibiotic-resistant fecal bacteria in Nepal reflects proximity to Kathmandu. J. Infect. Dis.184, 1163–1169 (2001).
  • Grenet K, Guillemot D, Jarlier V et al. Antibacterial resistance, Wayampis Amerindians, French Guyana. Emerg. Infect. Dis.10, 1150–1153 (2004).
  • Bartoloni A, Bartalesi F, Mantella A et al. High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. J. Infect. Dis.189, 1291–1294 (2004).
  • Bartoloni A, Pallecchi L, Rodríguez H et al. Antibiotic resistance in a very remote Amazonas community. Int. J. Antimicrob. Agents (2008) (In press).
  • Bartoloni A, Pallecchi L, Benedetti M et al. Multidrug-resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg. Infect. Dis.12, 907–913 (2006).
  • Pallecchi L, Lucchetti C, Bartoloni A et al. Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrob. Agents Chemother.51, 1179–1184 (2007).
  • Huber WG, Korica D, Neal TP, Schnurrenberger PR, Martin RJ. Antibiotic sensitivity patterns and R factors in domestic and wild animals. Arch. Environ. Health22, 561–567 (1971).
  • Pagano A, Nardi G, Bonaccorso C et al. Faecal bacteria of wild ruminants and the Alpine marmot. Vet. Res. Commun.9, 227–232 (1985).
  • Caprioli A, Donelli G, Falbo V, Passi C, Pagano A, Mantovani A. Antimicrobial resistance and production of toxins in Escherichia coli strains from wild ruminants and the Alpine marmot. J. Wild. Dis.27, 324–327 (1991).
  • Rolland RM, Hausfater G, Marshall B, Levy SB. Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse. Appl. Environ. Microbiol.49, 791–794 (1985).
  • Routman E, Miller RD, Phillips-Conroy J, Hartl DL. Antibiotic resistance and population structure in Escherichia coli from free-ranging African yellow baboons. Appl. Environ. Microbiol.50, 749–754 (1985).
  • Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA. Antibiotic resistance in wild rodents. Nature401, 233–234 (1999).
  • Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA. Reply to Osterblad et al.Nature409, 38 (2001).
  • Osterblad M, Norrdahl K, Korpimaki E, Huovinen P. How wild are wild mammals? Nature409, 37–38 (2001).
  • Skurnik D, Ruimy R, Andremont A et al. Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. J. Antimicrob. Chemother.57, 1215–1219 (2006).
  • Costa D, Poeta P, Saenz Y et al. Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J. Antimicrob. Chemother.58, 1311–1312 (2006).
  • Costa D, Poeta P, Saenz Y et al. Mechanisms of antibiotic resistance in Escherichia coli recovered from wild animals. Microb. Drug Res.14, 71–77 (2008).
  • Souza V, Rocha M, Valera A, Eguiarte LE. Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl. Environ. Microbiol.65, 3373–3385 (1999).
  • Sherley M, Gordon DM, Collignon PJ. Variations in antibiotic resistance profile in Enterobacteriaceae isolated from wild Australian mammals. Environ. Microbiol.2, 620–631 (2000).
  • Livermore DM, Warner M, Hall LMC et al. Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. Environ. Microbiol.3, 658–661 (2001).
  • Lillehaug A, Bergsjo B, Schau J, Bruheim T, Vikoren T, Handeland K. Campylobacter spp., Salmonella spp., verocytotoxic Escherichia coli, and antibiotic resistance in indicator organisms in wild cervids. Acta Vet. Scand.46, 23–32 (2005).
  • Middleton JH, Ambrose A. Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis). J. Wild. Dis.41, 334–341 (2005).
  • D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science311, 374–377 (2006).
  • Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Rev. Microbiol.5, 175–186 (2007).
  • Sjolund M, Bonnedahl J, Hernandez J et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg. Infect. Dis.14, 70–72 (2008).
  • Andersson DI, Levin BR. The biological cost of antibiotic resistance. Curr. Opin. Microbiol.2, 489–493 (1999).
  • Schrag SJ, Perrot V, Levin BR. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. Biol. Sci.264, 1287–1291 (1997).
  • Salyers AA, Amabile-Cuevas CF. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother.41, 2321–2325 (1997).
  • Lenski RE. Bacterial evolution and the cost of antibiotic resistance. Int. Microbiol.1, 265–270 (1998).
  • Levin BR, Perrot V, Walker N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics154, 985–997 (2000).
  • Enne VI, Delsol AA, Davis GR, Hayward SL, Roe JM, Bennett PM. Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element. J. Antimicrob. Chemother.56, 544–551 (2005).
  • Ramadhan AA, Hegedus E. Survivability of vancomycin resistant enterococci and fitness cost of vancomycin resistance acquisition. J. Clin. Pathol.58, 744–746 (2005).
  • Sander P, Springer B, Prammananan T et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother.46, 1204–1211 (2002).
  • Enne VI, Bennett PM, Livermore DM, Hall LM. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J. Antimicrob. Chemother.53, 958–963 (2004).
  • Luo N, Pereira S, Sahin O et al. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl Acad. Sci. USA102, 541–546 (2005).
  • Alonso A, Sanchez P, Martinez JL. Environmental selection of antibiotic resistance genes. Environ. Microbiol.3, 1–9 (2001).
  • Summers AO. Generally overlooked fundamentals of bacterial genetics and ecology. Clin. Infect. Dis.34(Suppl. 3), S85–S92 (2002).
  • Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett.271, 147–161 (2007).
  • Rawlings DE. Proteic toxin–antitoxin, bacterial plasmid addiction systems and their evolution with special reference to the pas system of pTF-FC2. FEMS Microbiol. Lett.176, 269–277 (1999).
  • Singer RS, Ward MP, Maldonado G. Can landscape ecology untangle the complexity of antibiotic resistance? Nature Rev. Microbiol.4, 943–952 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.