224
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Redox proteomics: from residue modifications to putative biomarker identification by gel- and LC-MS-based approaches

, , &
Pages 537-549 | Published online: 09 Jan 2014

References

  • Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22(37), 5734–5754 (2003).
  • Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48(2), 158–167 (2012).
  • Butterfield DA, Perluigi M, Reed T et al. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid. Redox Signal. 17(11), 1610–1655 (2012).
  • Lushchak VI. Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Mosc) 72(8), 809–827 (2007).
  • Maleknia SD, Brenowitz M, Chance MR. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem. 71(18), 3965–3973 (1999).
  • Kiselar JG, Maleknia SD, Sullivan M, Downard KM, Chance MR. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. Int. J. Radiat. Biol. 78(2), 101–114 (2002).
  • Mcclintock C, Kertesz V, Hettich RL. Development of an electrochemical oxidation method for probing higher order protein structure with mass spectrometry. Anal. Chem. 80(9), 3304–3317 (2008).
  • Roeser J, Bischoff R, Bruins AP, Permentier HP. Oxidative protein labeling in mass-spectrometry-based proteomics. Anal. Bioanal. Chem. 397(8), 3441–3455 (2010).
  • Sharp JS, Becker JM, Hettich RL. Protein surface mapping by chemical oxidation: structural analysis by mass spectrometry. Anal. Biochem. 313(2), 216–225 (2003).
  • Takamoto K, Chance MR. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct. 35, 251–276 (2006).
  • Xu G, Kiselar J, He Q, Chance MR. Secondary reactions and strategies to improve quantitative protein footprinting. Anal. Chem. 77(10), 3029–3037 (2005).
  • Wang Y, Yang J, Yi J. Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. Antioxid. Redox Signal. 16(7), 649–657 (2012).
  • Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J. Cell Mol. Med. 10(2), 389–406 (2006).
  • Dalle-Donne I, Scaloni A, Giustarini D et al. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom. Rev. 24(1), 55–99 (2005).
  • England K, Cotter T. Identification of carbonylated proteins by MALDI-TOF mass spectroscopy reveals susceptibility of ER. Biochem. Biophys. Res. Commun. 320(1), 123–130 (2004).
  • Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H. Biological significance of nitric oxide-mediated protein modifications. Am. J. Physiol. 287(2), L262–268 (2004).
  • Hill BG, Dranka BP, Bailey SM, Lancaster JR, Jr., Darley-Usmar VM. What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology. J. Biol. Chem. 285(26), 19699–19704 (2010).
  • Evangelista AM, Kohr MJ, Murphy E. S-Nitrosylation: specificity, occupancy, and interaction with other post-translational modifications. Antioxid. Redox Signal. 19(11), 1209–1209 (2013).
  • Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J. Biol. Chem. (2013).
  • Yakovlev VA, Mikkelsen RB. Protein tyrosine nitration in cellular signal transduction pathways. J. Recept. Signal. Transduct. Res. 30(6), 420–429 (2010).
  • Wiseman DA, Thurmond DC. The good and bad effects of cysteine S-nitrosylation and tyrosine nitration upon insulin exocytosis: a balancing act. Curr. Diabetes Rev. 8(4), 303–315 (2012).
  • Madian AG, Regnier FE. Proteomic identification of carbonylated proteins and their oxidation sites. J. Proteome Res. 9(8), 3766–3780 (2010).
  • Bantscheff M, Kuster B. Quantitative mass spectrometry in proteomics. Anal. Bioanal. Chem. 404(4), 937–938 (2012).
  • Hansen RE, Winther JR. An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal. Biochem. 394(2), 147–158 (2009).
  • Armstrong AE, Zerbes R, Fournier PA, Arthur PG. A fluorescent dual labeling technique for the quantitative measurement of reduced and oxidized protein thiols in tissue samples. Free Radic. Biol. Med. 50(4), 510–517 (2011).
  • Sheehan D, Mcdonagh B, Barcena JA. Redox proteomics. Expert Rev. Proteomics 7(1), 1–4 (2010).
  • Chevallet M, Diemer H, Van Dorssealer A, Villiers C, Rabilloud T. Toward a better analysis of secreted proteins: the example of the myeloid cells secretome. Proteomics 7(11), 1757–1770 (2007).
  • Izquierdo-Alvarez A, Martinez-Ruiz A. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE. J. Proteomics 75(2), 329–338 (2011).
  • Leonard SE, Carroll KS. Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology. Curr. Opin. Chem. Biol. 15(1), 88–102 (2011).
  • Ying J, Clavreul N, Sethuraman M, Adachi T, Cohen RA. Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic. Biol. Med. 43(8), 1099–1108 (2007).
  • Hill BG, Reily C, Oh JY, Johnson MS, Landar A. Methods for the determination and quantification of the reactive thiol proteome. Free Radic. Biol. Med. 47(6), 675–683 (2009).
  • Han B, Stevens JF, Maier CS. Design, synthesis, and application of a hydrazide-functionalized isotope-coded affinity tag for the quantification of oxylipid-protein conjugates. Anal. Chem. 79(9), 3342–3354 (2007).
  • Hu W, Tedesco S, Mcdonagh B, Barcena JA, Keane C, Sheehan D. Selection of thiol- and disulfide-containing proteins of Escherichia coli on activated thiol-Sepharose. Anal. Biochem. 398(2), 245–253 (2010).
  • Lee YR, Chen YW, Tsai MC, Chou HC, Chan HL. Redox- and expression-proteomic analysis of plasma biomarkers in bladder transitional cell carcinoma. Mol. Biosyst. 8(12), 3314–3324 (2012).
  • Chou HC, Lu YC, Cheng CS et al. Proteomic and redox-proteomic analysis of berberine-induced cytotoxicity in breast cancer cells. J. Proteomics 75(11), 3158–3176 (2012).
  • Lin ST, Lo YW, Chang SJ et al. Redox-proteomic analysis of doxorubicin resistance-induced altered thiol activity in uterine carcinoma. J. Pharm. Biomed. Anal. 78–79, 1–8 (2013).
  • Stacey MM, Cuddihy SL, Hampton MB, Winterbourn CC. Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid. Arch. Biochem. Biophys. 527(1), 45–54 (2012).
  • Dall'agnol M, Bernstein C, Bernstein H, Garewal H, Payne CM. Identification of S-nitrosylated proteins after chronic exposure of colon epithelial cells to deoxycholate. Proteomics 6(5), 1654–1662 (2006).
  • Laragione T, Bonetto V, Casoni F et al. Redox regulation of surface protein thiols: identification of integrin alpha-4 as a molecular target by using redox proteomics. Proc. Natl Acad. Sci. USA 100(25), 14737–14741 (2003).
  • Liu T, Qian WJ, Chen WN et al. Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: the human mammary epithelial cell proteome. Proteomics 5(5), 1263–1273 (2005).
  • Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome. Anal. Chem. 85(7), 3774–3780 (2013).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17(10), 994–999 (1999).
  • Sethuraman M, Mccomb ME, Heibeck T, Costello CE, Cohen RA. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol. Cell. Proteomics 3(3), 273–278 (2004).
  • Sethuraman M, Mccomb ME, Huang H et al. Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J. Proteome Res. 3(6), 1228–1233 (2004).
  • Garcia-Santamarina S, Boronat S, Espadas G, Ayte J, Molina H, Hidalgo E. The oxidized thiol proteome in fission yeast–optimization of an ICAT-based method to identify H2O2-oxidized proteins. J. Proteomics 74(11), 2476–2486 (2011).
  • Kumar V, Kleffmann T, Hampton MB, Cannell MB, Winterbourn CC. Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry. Free Radical. Biol. Med. 58, 109–117 (2013).
  • Leichert LI, Gehrke F, Gudiseva HV et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl Acad. Sci. USA 105(24), 8197–8202 (2008).
  • Brandes N, Reichmann D, Tienson H, Leichert LI, Jakob U. Using quantitative redox proteomics to dissect the yeast redoxome. J. Biol. Chem. 286(48), 41893–41903 (2011).
  • Kumsta C, Thamsen M, Jakob U. Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans. Antioxid. Redox Signal. 14(6), 1023–1037 (2011).
  • Lindemann C, Leichert LI. Quantitative redox proteomics: the NOxICAT method. Methods Mol. Biol. 893, 387–403 (2012).
  • Thompson A, Schafer J, Kuhn K et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75(8), 1895–1904 (2003).
  • Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA, Stamler JS. Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat. Biotechnol. 27(6), 557–559 (2009).
  • Han B, Hare M, Wickramasekara S, Fang Y, Maier CS. A comparative 'bottom up' proteomics strategy for the site-specific identification and quantification of protein modifications by electrophilic lipids. J. Proteomics 75(18), 5724–5733 (2012).
  • Zhou X, Han P, Li J et al. ESNOQ, proteomic quantification of endogenous S-nitrosation. PLoS ONE 5(4), e10015 (2010).
  • Han P, Chen C. Detergent-free biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of S-nitrosylated proteins. Rapid Commun. Mass Spectrom. 22(8), 1137–1145 (2008).
  • Torta F, Bachi A. Quantitative analysis of S-nitrosylated proteins. Methods Mol. Biol. 893, 405–416 (2012).
  • Hao G, Derakhshan B, Shi L, Campagne F, Gross SS. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc. Natl Acad. Sci. USA. 103(4), 1012–1017 (2006).
  • Derakhshan B, Wille PC, Gross SS. Unbiased identification of cysteine S-nitrosylation sites on proteins. Nat. Protocols 2(7), 1685–1691 (2007).
  • Benhar M, Thompson JW, Moseley MA, Stamler JS. Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach. Biochemistry 49(32), 6963–6969 (2010).
  • Tambor V, Hunter CL, Seymour SL, Kacerovsky M, Stulik J, Lenco J. CysTRAQ – A combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes. J. Proteomics 75(3), 857–867 (2012).
  • Mcdonagh B, Martinez-Acedo P, Vazquez J, Padilla CA, Sheehan D, Barcena JA. Application of iTRAQ Reagents to Relatively Quantify the Reversible Redox State of Cysteine Residues. Int. J. Proteomics 2012, 514847 (2012).
  • Murray CI, Uhrigshardt H, O'meally RN, Cole RN, Van Eyk JE. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol. Cell. Proteomics 11(2), M111 013441 (2012).
  • Palmese A, De Rosa C, Chiappetta G, Marino G, Amoresano A. Novel method to investigate protein carbonylation by iTRAQ strategy. Anal. Bioanal. Chem. 404(6–7), 1631–1635 (2012).
  • Feng J, Xie H, Meany DL, Thompson LV, Arriaga EA, Griffin TJ. Quantitative proteomic profiling of muscle type-dependent and age-dependent protein carbonylation in rat skeletal muscle mitochondria. J. Gerontol. A Biol. Sci. Med. Sci. 63(11), 1137–1152 (2008).
  • Pimenova T, Pereira CP, Gehrig P, Buehler PW, Schaer DJ, Zenobi R. Quantitative mass spectrometry defines an oxidative hotspot in hemoglobin that is specifically protected by haptoglobin. J. Proteome Res. 9(8), 4061–4070 (2010).
  • Liu Q, Simpson DC, Gronert S. The reactivity of human serum albumin toward trans-4-hydroxy-2-nonenal. J. Mass Spectrom. 47(4), 411–424 (2012).
  • Cutillas PR, Vanhaesebroeck B. Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol. Cell. Proteomics 6(9), 1560–1573 (2007).
  • Chang YC, Huang CN, Lin CH, Chang HC, Wu CC. Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation. Proteomics 10(16), 2961–2971 (2010).
  • Meng F, Yao D, Shi Y et al. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol. Neurodegeneration 6, 34 (2011).
  • Aldini G, Regazzoni L, Orioli M, Rimoldi I, Facino RM, Carini M. A tandem MS precursor-ion scan approach to identify variable covalent modification of albumin Cys34: a new tool for studying vascular carbonylation. J. Mass Spectrom. 43(11), 1470–1481 (2008).
  • Brock JW, Jenkins AJ, Lyons TJ et al. Increased methionine sulfoxide content of apoA-I in type 1 diabetes. J. Lipid Res. 49(4), 847–855 (2008).
  • Lee SH, Miyamoto K, Goto T, Oe T. Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry. J. Proteomics 75(2), 435–449 (2011).
  • Bollineni R, Hoffmann R, Fedorova M. Identification of protein carbonylation sites by two-dimensional liquid chromatography in combination with MALDI- and ESI-MS. J. Proteomics 74(11), 2338–2350 (2011).
  • Bollineni R, Fedorova M, Hoffmann R. Identification of carbonylated peptides by tandem mass spectrometry using a precursor ion-like scan in negative ion mode. J. Proteomics 74(11), 2351–2359 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.