87
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Redox proteomics gives insights into the role of oxidative stress in alkaptonuria

, , &
Pages 521-535 | Published online: 09 Jan 2014

References

  • Phornphutkul C, Introne WJ, Perry MB et al. Natural history of alkaptonuria. N. Engl. J. Med. 347(26), 2111–2121 (2002).
  • Fernandez-Canon JM, Granadino B, Beltran-Valero De Bernabe D et al. The molecular basis of alkaptonuria. Nat. Genet. 14(1), 19–24 (1996).
  • Zatkova A, De Bernabe DB, Polakova H et al. High frequency of alkaptonuria in Slovakia: evidence for the appearance of multiple mutations in HGO involving different mutational hot spots. Am. J. Hum. Genet. 67(5), 1333–1339 (2000).
  • Goicoechea De Jorge E, Lorda I, Gallardo Me et al. Alkaptonuria in the Dominican Republic: identification of the founder AKU mutation and further evidence of mutation hot spots in the HGO gene. J. Med. Genet. 39(7), e40 (2002).
  • Garrod AE. The incidence of alkaptonuria: a study in chemical individuality. 1902 [classical article]. Yale J. Biol. Med. 75(4), 221–231 (2002).
  • La Du BN, Zannoni VG, Laster L, Seegmiller JE. The nature of the defect in tyrosine metabolism in alcaptonuria. J. Biol. Chem. 230(1), 251–260 (1958).
  • Laschi M, Tinti L, Braconi D et al. Homogentisate 1,2 dioxygenase is expressed in human osteoarticular cells: implications in alkaptonuria. J. Cell. Physiol. 227(9), 3254–3257 (2012).
  • Laxon S, Ranganath L, Timmis O. Living with alkaptonuria. BMJ 343, d5155 (2011).
  • Helliwell TR, Gallagher JA, Ranganath L. Alkaptonuria–a review of surgical and autopsy pathology. Histopathology 53(5), 503–512 (2008).
  • Pettit SJ, Fisher M, Gallagher JA, Ranganath LR. Cardiovascular manifestations of Alkaptonuria. J. Inherit. Metab. Dis. 34(6), 1177–1181 (2011).
  • Wilke A, Steverding D. Ochronosis as an unusual cause of valvular defect: a case report. J. Med. Case Rep. 3, 9302 (2009).
  • Erek E, Casselman FR, Vanermen H. Cardiac ochronosis: valvular heart disease with dark green discoloration of the leaflets. Tex. Heart Inst. J. 31(4), 445–447 (2004).
  • Gaines JJ, Jr. The pathology of alkaptonuric ochronosis. Hum. Pathol. 20(1), 40–46 (1989).
  • Stenn FF, Milgram JW, Lee SL, Weigand RJ, Veis A. Biochemical identification of homogentisic acid pigment in an ochronotic egyptian mummy. Science 197(4303), 566–568 (1977).
  • Lee SL, Stenn FF. Characterization of mummy bone ochronotic pigment. JAMA 240(2), 136–138 (1978).
  • Presto Elgstoen KB, Jellum E. Capillary electrophoresis for diagnosis of metabolic disease. Electrophoresis 18(10), 1857–1860 (1997).
  • Yamaguchi S, Koda N, Yamamoto H. Analysis for homogentisic acid by NMR spectrometry, to aid diagnosis of alkaptonuria. Clin. Chem. 35(8), 1806–1807 (1989).
  • Bory C, Boulieu R, Chantin C, Mathieu M. Diagnosis of alcaptonuria: rapid analysis of homogentisic acid by HPLC. Clin. Chim. Acta 189(1), 7–11 (1990).
  • Bory C, Boulieu R, Chantin C, Mathieu M. Homogentisic acid determined in biological fluids by HPLC. Clin. Chem. 35(2), 321–322 (1989).
  • Jellum E, Thoresen O, Horn L et al. Advances in the use of computerized gas chromatography-mass spectrometry and high-performance liquid chromatography with rapid scanning detection for clinical diagnosis. J. Chromatogr. 468, 43–53 (1989).
  • Mizuno T, Abe N, Teshima H et al. Application of a gas chromatography mass spectrometry computer system for clinical diagnosis. Biomed. Mass Spectrom. 8(12), 593–597 (1981).
  • Borman P, Bodur H, Ciliz D. Ochronotic arthropathy. Rheumatol. Int. 21(5), 205–209 (2002).
  • Groseanu L, Marinescu R, Laptoiun D et al. A late and difficult diagnosis of ochronosis. J. Med. Life 3(4), 437–443 (2010).
  • Laskar FH, Sargison KD. Ochronotic arthropathy. A review with four case reports. J. Bone Joint Surg. Br. 52(4), 653–666 (1970).
  • Vinjamuri S, Ramesh CN, Jarvis J, Gallagher JA, Ranganath LL. Nuclear medicine techniques in the assessment of alkaptonuria. Nucl. Med. Commun. 32(10), 880–886 (2011).
  • Jebaraj I, Chacko BR, Chiramel GK, Matthai T, Parameswaran A. A simplified staging system based on the radiological findings in different stages of ochronotic spondyloarthropathy. Indian J. Radiol. Imaging 23(1), 101–105 (2013).
  • De Haas V, Carbasius Weber EC, De Klerk JB et al. The success of dietary protein restriction in alkaptonuria patients is age-dependent. J. Inherit. Metab. Dis. 21(8), 791–798 (1998).
  • Kamoun P, Coude M, Forest M, Montagutelli X, Guenet JL. Ascorbic acid and alkaptonuria. Eur. J. Pediatr. 151(2), 149 (1992).
  • Martin JP Jr., Batkoff B. Homogentisic acid autoxidation and oxygen radical generation: implications for the etiology of alkaptonuric arthritis. Free Radic. Biol. Med. 3(4), 241–250 (1987).
  • Braconi D, Laschi M, Taylor AM et al. Proteomic and redox-proteomic evaluation of homogentisic acid and ascorbic acid effects on human articular chondrocytes. J. Cell Biochem. 111(4), 922–932 (2010).
  • Guidarelli A, Fiorani M, Cantoni O. Enhancing effects of intracellular ascorbic acid on peroxynitrite-induced U937 cell death are mediated by mitochondrial events resulting in enhanced sensitivity to peroxynitrite-dependent inhibition of complex III and formation of hydrogen peroxide. Biochem. J. 378(Pt 3), 959–966 (2004).
  • Guidarelli A, De Sanctis R, Cellini B, Fiorani M, Dacha M, Cantoni O. Intracellular ascorbic acid enhances the DNA single-strand breakage and toxicity induced by peroxynitrite in U937 cells. Biochem. J. 356(Pt 2), 509–513 (2001).
  • Tinti L, Spreafico A, Braconi D et al. Evaluation of antioxidant drugs for the treatment of ochronotic alkaptonuria in an in vitro human cell model. J. Cell Physiol. 225(1), 84–91 (2010).
  • Braconi D, Laschi M, Amato L et al. Evaluation of anti-oxidant treatments in an in vitro model of alkaptonuric ochronosis. Rheumatology (Oxford) 49(10), 1975–1983 (2010).
  • Spreafico A, Millucci L, Ghezzi L et al. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria. Rheumatology (Oxford) 52(9), 1667–1673 (2013).
  • Introne WJ, Perry MB, Troendle J et al. A 3-year randomized therapeutic trial of nitisinone in alkaptonuria. Mol. Genet. Metab. 103(4), 307–314 (2011).
  • Suwannarat P, O'Brien K, Perry MB et al. Use of nitisinone in patients with alkaptonuria. Metabolism 54(6), 719–728 (2005).
  • Preston AJ, Keenan CM, Sutherland H et al. Ochronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone. Ann. Rheum. Dis. doi:10.1136/annrheumdis-2012-202878 (2013) (Epub ahead of print).
  • Taylor AM, Preston AJ, Paulk NK et al. Ochronosis in a murine model of alkaptonuria is synonymous to that in the human condition. Osteoarthritis Cartilage 20(8), 880–886 (2012).
  • Cox TM. Alkaptonuria: leading to the treasure in exceptions. JIMD Rep. 5, 49–57 (2012).
  • Janocha S, Wolz W, Srsen S et al. The human gene for alkaptonuria (AKU) maps to chromosome 3q. Genomics 19(1), 5–8 (1994).
  • Gehrig A, Schmidt SR, Muller CR, Srsen S, Srsnova K, Kress W. Molecular defects in alkaptonuria. Cytogenet. Cell Genet. 76(1–2), 14–16 (1997).
  • Beltran-Valero De Bernabe D, Granadino B, Chiarelli I et al. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients. Am. J. Hum. Genet. 62(4), 776–784 (1998).
  • Higashino K, Liu W, Ohkawa T et al. A novel point mutation associated with alkaptonuria. Clin. Genet. 53(3), 228–229 (1998).
  • Beltran-Valero De Bernabe D, Jimenez FJ, Aquaron R, Rodriguez De Cordoba S. Analysis of alkaptonuria (AKU) mutations and polymorphisms reveals that the CCC sequence motif is a mutational hot spot in the homogentisate 1,2 dioxygenase gene (HGO). Am. J. Hum. Genet. 64(5), 1316–1322 (1999).
  • Felbor U, Mutsch Y, Grehn F, Muller CR, Kress W. Ocular ochronosis in alkaptonuria patients carrying mutations in the homogentisate 1,2-dioxygenase gene. Br. J. Ophthalmol. 83(6), 680–683 (1999).
  • Zatkova A, Polakova H, Micutkova L et al. Novel mutations in the homogentisate-1,2-dioxygenase gene identified in Slovak patients with alkaptonuria. J. Med. Genet. 37(7), 539–542 (2000).
  • Zatkova A. An update on molecular genetics of Alkaptonuria (AKU). J. Inherit. Metab. Dis. 34(6), 1127–1136 (2011).
  • Zatkova A, Sedlackova T, Radvansky J et al. Identification of 11 novel homogentisate 1,2 dioxygenase variants in alkaptonuria patients and establishment of a novel LOVD-based HGD mutation database. JIMD Rep. 4, 55–65 (2012).
  • Rodriguez JM, Timm DE, Titus GP et al. Structural and functional analysis of mutations in alkaptonuria. Hum. Mol. Genet. 9(15), 2341–2350 (2000).
  • Cox TF, Ranganath L. A quantitative assessment of alkaptonuria: testing the reliability of two disease severity scoring systems. J. Inherit. Metab. Dis. 34(6), 1153–1162 (2011).
  • Ranganath LR, Cox TF. Natural history of alkaptonuria revisited: analyses based on scoring systems. J. Inherit. Metab. Dis. 34(6), 1141–1151 (2011).
  • Millucci L, Spreafico A, Tinti L et al. Alkaptonuria is a novel human secondary amyloidogenic disease. Biochim. Biophys. Acta 1822(11), 1682–1691 (2012).
  • Hegedus ZL, Nayak U. Homogentisic acid and structurally related compounds as intermediates in plasma soluble melanin formation and in tissue toxicities. Arch. Int. Physiol. Biochim. Biophys. 102(3), 175–181 (1994).
  • Hegedus ZL. The probable involvement of soluble and deposited melanins, their intermediates and the reactive oxygen side-products in human diseases and aging. Toxicology 145(2–3), 85–101 (2000).
  • Rocha Jc, Martins Mj. Oxidative stress in phenylketonuria: future directions. J. Inherit. Metab. Dis. 35(3), 381–398 (2012).
  • De Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CM. Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol. Cell Biochem. 364(1–2), 253–261 (2012).
  • Sgaravatti AM, Magnusson AS, De Oliveira AS et al. Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metab. Brain Dis. 24(3), 415–425 (2009).
  • Kabuyama Y, Kitamura T, Yamaki J, Homma MK, Kikuchi S, Homma Y. Involvement of thioredoxin reductase 1 in the regulation of redox balance and viability of rheumatoid synovial cells. Biochem. Biophys. Res. Commun. 367(2), 491–496 (2008).
  • Braconi D, Bernardini G, Bianchini C et al. Biochemical and proteomic characterization of alkaptonuric chondrocytes. J. Cell Physiol. 227(9), 3333–3343 (2012).
  • Braconi D, Bianchini C, Bernardini G et al. Redox-proteomics of the effects of homogentisic acid in an in vitro human serum model of alkaptonuric ochronosis. J. Inherit. Metab. Dis. 34(6), 1163–1176 (2011).
  • Tinti L, Spreafico A, Chellini F, Galeazzi M, Santucci A. A novel ex vivo organotypic culture model of alkaptonuria-ochronosis. Clin. Exp. Rheumatol. 29(4), 693–696 (2011).
  • Tinti L, Taylor AM, Santucci A et al. Development of an in vitro model to investigate joint ochronosis in alkaptonuria. Rheumatology (Oxford) 50(2), 271–277 (2011).
  • Bay-Jensen AC, Wichuk S, Byrjalsen I et al. Circulating protein fragments of cartilage and connective tissue degradation are diagnostic and prognostic markers of rheumatoid arthritis and ankylosing spondylitis. PLoS ONE 8(1), e54504 (2013).
  • Gibson DS, Rooney ME, Finnegan S et al. Biomarkers in rheumatology, now and in the future. Rheumatology (Oxford) 51(3), 423–433 (2012).
  • Kentsis A. Challenges and opportunities for discovery of disease biomarkers using urine proteomics. Pediatr. Int. 53(1), 1–6 (2011).
  • Karsdal MA, Nielsen MJ, Sand JM et al. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug. Dev. Technol. 11(2), 70–92 (2013).
  • Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272(33), 20313–20316 (1997).
  • Brandes N, Schmitt S, Jakob U. Thiol-based redox switches in eukaryotic proteins. Antioxid. Redox. Signal. 11(5), 997–1014 (2009).
  • Jones DP. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295(4), C849–C868 (2008).
  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30(11), 1191–1212 (2001).
  • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45(5), 549–561 (2008).
  • Held JM, Gibson BW. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes. Mol. Cell Proteomics 11(4), R111 013037 (2012).
  • Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: Update of analytical strategies. Mass Spectrom. Rev. doi:10.1002/mas.21381 (2013) (Epub ahead of print).
  • Giustarini D, Dalle-Donne I, Lorenzini S et al. Protein thiolation index (PTI) as a biomarker of oxidative stress. Free Rad. Biol. Med. 53(4), 907–915 (2012).
  • Angeles AP, Badger R, Gruber HE, Seegmiller JE. Chondrocyte growth inhibition induced by homogentisic acid and its partial prevention with ascorbic acid. J. Rheumatol. 16(4), 512–517 (1989).
  • Ibold Y, Lubke C, Pelz S et al. Effect of different ascorbate supplementations on in vitro cartilage formation in porcine high-density pellet cultures. Tissue Cell 41(4), 249–256 (2009).
  • Bernardini G, Braconi D, Spreafico A, Santucci A. Post-genomics of bone metabolic dysfunctions and neoplasias. Proteomics 12(4–5), 708–721 (2012).
  • Taylor AM, Wlodarski B, Prior IA et al. Ultrastructural examination of tissue in a patient with alkaptonuric arthropathy reveals a distinct pattern of binding of ochronotic pigment. Rheumatology (Oxford) 49(7), 1412–1414 (2010).
  • Obici L, Merlini G. AA amyloidosis: basic knowledge, unmet needs and future treatments. Swiss Med. Wkly. 142, w13580 (2012).
  • Dyall SC. Amyloid-beta peptide, oxidative stress and inflammation in alzheimer's disease: potential neuroprotective effects of omega-3 polyunsaturated fatty acids. Int. J. Alzheimer's Dis. 21(5), 364–73 (2010).
  • Kamalvand G, Ali-Khan Z. Immunolocalization of lipid peroxidation/advanced glycation end products in amyloid A amyloidosis. Free Radic. Biol. Med. 36(5), 657–664 (2004).
  • Ando Y, Nyhlin N, Suhr O et al. Oxidative stress is found in amyloid deposits in systemic amyloidosis. Biochem. Biophys. Res. Commun. 232(2), 497–502 (1997).
  • Ando Y, Brannstrom T, Uchida K et al. Histochemical detection of 4-hydroxynonenal protein in Alzheimer amyloid. J. Neurol. Sci. 156(2), 172–176 (1998).
  • Van Der Hilst JCH, Kluve-Beckerman B, Van Der Meer JWM, Simon A. Cathepsin D activity protects against development of type AA amyloid fibrils. Eur. J. Clin. Invest. 39(5), 412–416 (2009).
  • Sohal RS, Allen RG. Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp. Gerontol. 25(6), 499–522 (1990).
  • Sticozzi C, Pecorelli A, Lim Y et al. Modulation of skin oxidative stress and inflammatory markers by environmental stressors. Differences between young and old. J. Dermatol. Sci. 65(3), 226–228 (2012).
  • Sohal RS, Orr WC. The redox stress hypothesis of aging. Free Radic. Biol. Med. 52(3), 539–555 (2012).
  • Giustarini D, Dalle-Donne I, Lorenzini S, Milzani A, Rossi R. Age-related influence on thiol, disulfide, and protein-mixed disulfide levels in human plasma. J. Gerontol. A Biol. Sci. Med. Sci. 61(10), 1030–1038 (2006).
  • Cerioni L, Fiorani M, Azzolini C, Cantoni O. A moderate decline in U937 cell GSH levels triggers PI3 kinase/Akt-dependent Bad phosphorylation, thereby preventing an otherwise prompt apoptotic response. Pharmacol. Res. 65(3), 379–386 (2012).
  • Valacchi G, Weber Su, Luu C, Cross Ce, Packer L. Ozone potentiates vitamin E depletion by ultraviolet radiation in the murine stratum corneum. FEBS Lett. 466(1), 165–168 (2000).
  • Steinhubl SR. Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101(10A), 14D–19D (2008).
  • Kaspar RL. Challenges in developing therapies for rare diseases including pachyonychia congenita. J. Investig. Dermatol. Symp. Proc. 10(1), 62–66 (2005).
  • Burns KH, Chakravarti A. Massively parallel rare disease genetics. Genome Med. 3(5), 29 (2011).
  • D'alessandro A, Rinalducci S, Zolla L. Redox proteomics and drug development. J. Proteomics 74(12), 2575–2595 (2011).
  • Abbott A. Rare-disease project has global ambitions. Nature 472(7341), 17 (2011).
  • Mitsumoto A, Takeuchi A, Okawa K, Nakagawa Y. A subset of newly synthesized polypeptides in mitochondria from human endothelial cells exposed to hydroperoxide stress. Free Radic. Biol. Med. 32(1), 22–37 (2002).
  • Mackness B, Mackness M. The antioxidant properties of high-density lipoproteins in atherosclerosis. Panminerva Med. 54(2), 83–90 (2012).
  • Teoh CL, Griffin MD, Howlett GJ. Apolipoproteins and amyloid fibril formation in atherosclerosis. Protein Cell 2(2), 116–127 (2011).
  • Gursky O, Mei X, Atkinson D. The crystal structure of the C-terminal truncated apolipoprotein A-I sheds new light on amyloid formation by the N-terminal fragment. Biochemistry 51(1), 10–18 (2012).
  • Obici L, Franceschini G, Calabresi L et al. Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 13(4), 191–205 (2006).
  • Mukhopadhyay CK, Fox PL. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant. Biochemistry 37(40), 14222–14229 (1998).
  • Ghiso J, Matsubara E, Koudinov A et al. The cerebrospinal-fluid soluble form of Alzheimer's amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem. J. 293(Pt 1), 27–30 (1993).
  • Yerbury JJ, Poon S, Meehan S et al. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 21(10), 2312–2322 (2007).
  • Kumita JR, Poon S, Caddy GL et al. The extracellular chaperone clusterin potently inhibits human lysozyme amyloid formation by interacting with prefibrillar species. J. Mol. Biol. 369(1), 157–167 (2007).
  • Chacko G, Ling Q, Hajjar KA. Induction of acute translational response genes by homocysteine. Elongation factors-1alpha, -beta, and -delta. J. Biol. Chem. 273(31), 19840–19846 (1998).
  • Nakajima H, Amano W, Fujita A et al. The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J. Biol. Chem. 282(36), 26562–26574 (2007).
  • Dastoor Z, Dreyer JL. Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J. Cell Sci. 114(Pt 9), 1643–1653 (2001).
  • Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress. Biochim. Biophys. Acta 1762(5), 502–509 (2006).
  • Asleh R, Marsh S, Shilkrut M et al. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ. Res. 92(11), 1193–1200 (2003).
  • Turturici G, Sconzo G, Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem. Res. Int. 2011, 618127 (2011).
  • Fuentes-Almagro CA, Prieto-Alamo MJ, Pueyo C, Jurado J. Identification of proteins containing redox-sensitive thiols after PRDX1, PRDX3 and GCLC silencing and/or glucose oxidase treatment in Hepa 1–6 cells. J. Proteomics 77, 262–279 (2012).
  • Tolosano E, Altruda F. Hemopexin: structure, function, and regulation. DNA Cell Biol. 21(4), 297–306 (2002).
  • Lumb RA, Bulleid NJ. Is protein disulfideisomerase a redox-dependent molecular chaperone? EMBO J. 21(24), 6763–6770 (2002).
  • Honjo Y, Ito H, Horibe T, Takahashi R, Kawakami K. Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res. 1349, 90–96 (2010).
  • Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5(2), 213–218 (2004).
  • Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A. DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol. 2(11), e362 (2004).
  • Sekito A, Koide-Yoshida S, Niki T, Taira T, Iguchi-Ariga SM, Ariga H. DJ-1 interacts with HIPK1 and affects H2O2-induced cell death. Free Radic. Res. 40(2), 155–165 (2006).
  • Clements CM, Mcnally RS, Conti BJ, Mak TW, Ting JP. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl Acad. Sci. USA 103(41), 15091–15096 (2006).
  • Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem. J. 434(3), 365–381 (2011).
  • Turell L, Radi R, Alvarez B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic. Biol. Med. 65C, 244–253 (2013).
  • Tsai YC, Lee YM, Lam KK et al. The role of heat shock protein 70 in the protective effect of YC-1 on beta-amyloid-induced toxicity in differentiated PC12 cells. PLoS ONE 8(7), e69320 (2013).
  • Muller T, Concannon CG, Ward MW et al. Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD). Mol. Biol. Cell 18(1), 201–210 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.