269
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Advanced technologies for studying circulating tumor cells at the protein level

, , , , , , , , , & show all
Pages 579-589 | Published online: 09 Jan 2014

References

  • Geiger TR, Peeper DS. Metastasis mechanisms. Biochim. Biophys. Acta 1796(2), 293–308 (2009).
  • Negin BP, Cohen SJ. Circulating tumor cells in colorectal cancer: past, present, and future challenges. Curr. Treat. Options Oncol. 11(1–2), 1–13 (2010).
  • Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23(5), 573–581 (2013).
  • Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat. Cell Biol. 15(6), 546–554 (2013).
  • Riethdorf S, Müller V, Zhang L et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin. Cancer Res. 16(9), 2634–2645 (2010).
  • Gorges TM, Pantel K. Circulating tumor cells as therapy-related biomarkers in cancer patients. Cancer Immunol. Immunother. 62(5), 931–939 (2013).
  • Cristofanilli M, Budd GT, Ellis MJ et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351(8), 781–791 (2004).
  • Pailler E, Adam J, Barthélémy A et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J. Clin. Oncol. 31(18), 2273–2281 (2013).
  • Khan MS, Kirkwood A, Tsigani T et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J. Clin. Oncol. 31(3), 365–372 (2013).
  • Iinuma H, Watanabe T, Mimori K et al. Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes' stage B and C colorectal cancer. J. Clin. Oncol. 29(12), 1547–1555 (2011).
  • Uenosono Y, Arigami T, Kozono T et al. Clinical significance of circulating tumor cells in peripheral blood from patients with gastric cancer. Cancer doi:10.1002/cncr.28309 (2013) ( Epub ahead of print).
  • Schneck H, Blassl C, Meier-Stiegen F et al. Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol. Oncol. 7(5), 976–986 (2013).
  • Jiang ZF, Cristofanilli M, Shao ZM et al. Circulating tumor cells predict progression-free and overall survival in Chinese patients with metastatic breast cancer, HER2-positive or triple-negative (CBCSG004): a multicenter, double-blind, prospective trial. Ann. Oncol. doi:10.1093/annonc/mdt246 (2013) ( Epub ahead of print).
  • Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59(1), 110–118 (2013).
  • Fischer AH. Circulating tumor cells: seeing is believing. Arch. Pathol. Lab. Med. 133(9), 1367–1369 (2009).
  • Arya SK, Lim B, Rahman AR. Enrichment, detection and clinical significance of circulating tumor cells. Lab Chip 13(11), 1995–2027 (2013).
  • Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am. J. Pathol. 171(2), 386–395 (2007).
  • Went PT, Lugli A, Meier S et al. Frequent EpCam protein expression in human carcinomas. Hum. Pathol. 35(1), 122–128 (2004).
  • Winter MJ, Nagtegaal ID, van Krieken JH, Litvinov SV. The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am. J. Pathol. 163(6), 2139–2148 (2003).
  • Latza U, Niedobitek G, Schwarting R, Nekarda H, Stein H. Ber-EP4: new monoclonal antibody which distinguishes epithelia from mesothelial. J. Clin. Pathol. 43(3), 213–219 (1990).
  • Porcell AI, De Young BR, Proca DM, Frankel WL. Immunohistochemical analysis of hepatocellular and adenocarcinoma in the liver: MOC31 compares favorably with other putative markers. Mod. Pathol. 13(7), 773–778 (2000).
  • Morrison C, Marsh W, Frankel WL. A comparison of CD10 to pCEA, MOC-31, and hepatocyte for the distinction of malignant tumors in the liver. Mod. Pathol. 15(12), 1279–1287 (2002).
  • Raimondi C, Gradilone A, Naso G et al. Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res. Treat. 130(2), 449–455 (2011).
  • Gradilone A, Raimondi C, Nicolazzo C et al. Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. J. Cell Mol. Med. 15(5), 1066–1070 (2011).
  • Ordóñez NG. Broad-spectrum immunohistochemical epithelial markers: a review. Hum. Pathol. 44(7), 1195–1215 (2013).
  • Coulombe PA, Omary MB. 'Hard' and ‘soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14(1), 110–122 (2002).
  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31(1), 11–24 (1982).
  • Weng YR, Cui Y, Fang JY. Biological functions of cytokeratin 18 in cancer. Mol. Cancer Res. 10(4), 485–493 (2012).
  • Karantza V. Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30(2), 127–138 (2011).
  • Brown DC, Theaker JM, Banks PM, Gatter KC, Mason DY. Cytokeratin expression in smooth muscle and smooth muscle tumours. Histopathology 11(5), 477–486 (1987).
  • Miettinen M. Keratin immunohistochemistry: update of applications and pitfalls. Pathol. Annu. 28 Pt 2, 113–143 (1993).
  • Ordóñez NG, Mahfouz SM, Mackay B. Synovial sarcoma: an immunohistochemical and ultrastructural study. Hum. Pathol. 21(7), 733–749 (1990).
  • Miettinen M, Limon J, Niezabitowski A, Lasota J. Patterns of keratin polypeptides in 110 biphasic, monophasic, and poorly differentiated synovial sarcomas. Virchows Arch. 437(3), 275–283 (2000).
  • Miettinen M, Fanburg-Smith JC, Virolainen M, Shmookler BM, Fetsch JF. Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Hum. Pathol. 30(8), 934–942 (1999).
  • O'Hara BJ, Paetau A, Miettinen M. Keratin subsets and monoclonal antibody HBME-1 in chordoma: immunohistochemical differential diagnosis between tumors simulating chordoma. Hum. Pathol. 29(2), 119–126 (1998).
  • Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem. Cell Biol. 129(6), 705–733 (2008).
  • Ho SB, Niehans GA, Lyftogt C et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res. 53(3), 641–651 (1993).
  • Baldus SE, Mönig SP, Hanisch FG et al. Comparative evaluation of the prognostic value of MUC1, MUC2, sialyl-Lewis(a) and sialyl-Lewis(x) antigens in colorectal adenocarcinoma. Histopathology 40(5), 440–449 (2002).
  • Rabassa ME, Croce MV, Pereyra A, Segal-Eiras A. MUC1 expression and anti-MUC1 serum immune response in head and neck squamous cell carcinoma (HNSCC): a multivariate analysis. BMC Cancer 6, 253 (2006).
  • Kimura T, Finn OJ. MUC1 immunotherapy is here to stay. Expert Opin. Biol. Ther. 13(1), 35–49 (2013).
  • Guddo F, Giatromanolaki A, Koukourakis MI et al. MUC1 (episialin) expression in non-small cell lung cancer is independent of EGFR and c-erbB-2 expression and correlates with poor survival in node positive patients. J. Clin. Pathol. 51(9), 667–671 (1998).
  • Guddo F, Giatromanolaki A, Patriarca C et al. Depolarized expression of episialin (EMA, MUC1) in lung adenocarcinoma is associated with tumor progression. Anticancer Res. 18(3B), 1915–1920 (1998).
  • Mukhopadhyay P, Chakraborty S, Ponnusamy MP, Lakshmanan I, Jain M, Batra SK. Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim. Biophys. Acta 1815(2), 224–240 (2011).
  • Keshaviah A, Dellapasqua S, Rotmensz N et al. CA15–3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven international breast cancer study group trials. Ann. Oncol. 18(4), 701–708 (2007).
  • Giordano A, Cristofanilli M. CTCs in metastatic breast cancer. Recent Results Cancer Res. 195, 193–201 (2012).
  • Jelovac D, Emens LA. HER2-directed therapy for metastatic breast cancer. Oncology (Williston Park) 27(3), 166–175 (2013).
  • Dent S, Oyan B, Honig A, Mano M, Howell S. HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials. Cancer Treat. Rev. 39(6), 622–631 (2013).
  • Pestrin M, Bessi S, Galardi F et al. Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients. Breast Cancer Res. Treat. 118(3), 523–530 (2009).
  • Ignatiadis M, Rothé F, Chaboteaux C et al. HER2-positive circulating tumor cells in breast cancer. PLoS ONE 6(1), e15624 (2011).
  • Tewes M, Aktas B, Welt A et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res. Treat. 115(3), 581–590 (2009).
  • Munzone E, Nolé F, Goldhirsch A et al. Changes of HER2 status in circulating tumor cells compared with the primary tumor during treatment for advanced breast cancer. Clin. Breast Cancer 10(5), 392–397 (2010).
  • Somlo G, Lau SK, Frankel P et al. Multiple biomarker expression on circulating tumor cells in comparison to tumor tissues from primary and metastatic sites in patients with locally advanced/inflammatory, and stage IV breast cancer, using a novel detection technology. Breast Cancer Res. Treat. 128(1), 155–163 (2011).
  • Hayashi N, Nakamura S, Tokuda Y et al. Prognostic value of HER2-positive circulating tumor cells in patients with metastatic breast cancer. Int. J. Clin. Oncol. 17(2), 96–104 (2012).
  • Wülfing P, Borchard J, Buerger H et al. HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin. Cancer Res. 12(6), 1715–1720 (2006).
  • Kim P, Liu X, Lee T et al. Highly sensitive proximity mediated immunoassay reveals HER2 status conversion in the circulating tumor cells of metastatic breast cancer patients. Proteome Sci. 9(1), 75 (2011).
  • Hermiston ML, Xu Z, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).
  • Penninger JM, Irie-Sasaki J, Sasaki T, Oliveira-dos-Santos AJ. CD45: new jobs for an old acquaintance. Nat. Immunol. 2(5), 389–396 (2001).
  • Tchilian EZ, Beverley PC. Altered CD45 expression and disease. Trends Immunol. 27(3), 146–153 (2006).
  • Petricoin EF, Ito S, Williams BL et al. Antiproliferative action of interferon-alpha requires components of T-cell-receptor signalling. Nature 390(6660), 629–632 (1997).
  • Irie-Sasaki J, Sasaki T, Matsumoto W et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409(6818), 349–354 (2001).
  • Byth KF, Conroy LA, Howlett S et al. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J. Exp. Med. 183(4), 1707–1718 (1996).
  • Miraglia S, Godfrey W, Yin AH et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90(12), 5013–5021 (1997).
  • Yin AH, Miraglia S, Zanjani ED et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90(12), 5002–5012 (1997).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 432(7015), 396–401 (2004).
  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65(23), 10946–10951 (2005).
  • Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem. Biophys. Res. Commun. 351(4), 820–824 (2006).
  • Yin S, Li J, Hu C et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer 120(7), 1444–1450 (2007).
  • Hermann PC, Huber SL, Herrler T et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3), 313–323 (2007).
  • Eramo A, Lotti F, Sette G et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15(3), 504–514 (2008).
  • Tirino V, Camerlingo R, Franco R et al. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur. J. Cardiothorac. Surg. 36(3), 446–453 (2009).
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon cancer-initiating cells. Nature 445(7123), 111–115 (2007).
  • Ferrandina G, Bonanno G, Pierelli L et al. Expression of CD133–1 and CD133–2 in ovarian cancer. Int. J. Gynecol. Cancer 18(3), 506–514 (2008).
  • Nadal R, Ortega FG, Salido M et al. CD133 expression in circulating tumor cells from breast cancer patients: potential role in resistance to chemotherapy. Int. J. Cancer 133(10), 2398–2407 (2013).
  • Moreira AL, Gonen M, Rekhtman N, Downey RJ. Progenitor stem cell marker expression by pulmonary carcinomas. Mod. Pathol. 23(6), 889–895 (2010).
  • Herpel E, Jensen K, Muley T et al. The cancer stem cell antigens CD133, BCRP1/ABCG2 and CD117/c-KIT are not associated with prognosis in resected early-stage non-small cell lung cancer. Anticancer Res. 31(12), 4491–4500 (2011).
  • Salnikov AV, Gladkich J, Moldenhauer G, Volm M, Mattern J, Herr I. CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. Int. J. Cancer 126(4), 950–958 (2010).
  • Chen YC, Hsu HS, Chen YW et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS ONE 3(7), e2637 (2008).
  • Li F, Zeng H, Ying K. The combination of stem cell markers CD133 and ABCG2 predicts relapse in stage I non-small cell lung carcinomas. Med. Oncol. 28(4), 1458–1462 (2011).
  • Shmelkov SV, Butler JM, Hooper AT et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118(6), 2111–2120 (2008).
  • Irollo E, Pirozzi G. CD133: to be or not to be, is this the real question? Am. J. Transl. Res. 5(6), 563–581 (2013).
  • Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 7(12), 243 (2006).
  • Fusi A, Liu Z, Kümmerlen V, Nonnemacher A, Jeske J, Keilholz U. Expression of chemokine receptors on circulating tumor cells in patients with solid tumors. J. Transl. Med. 10, 52 (2012).
  • Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 11(9), 597–606 (2011).
  • Domanska UM, Kruizinga RC, Nagengast WB et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur. J. Cancer 49(1), 219–230 (2013).
  • Pituch-Noworolska A, Drabik G, Szatanek R et al. Immunophenotype of isolated tumour cells in the blood, bone marrow and lymph nodes of patients with gastric cancer. Pol. J. Pathol. 58(2), 93–97 (2007).
  • Reckamp KL, Figlin RA, Burdick MD, Dubinett SM, Elashoff RM, Strieter RM. CXCR4 expression on circulating pan-cytokeratin positive cells is associated with survival in patients with advanced non-small cell lung cancer. BMC Cancer 9, 213 (2009).
  • Na IK, Scheibenbogen C, Adam C et al. Nuclear expression of CXCR4 in tumor cells of non-small cell lung cancer is correlated with lymph node metastasis. Hum. Pathol. 39(12), 1751–1755 (2008).
  • Pan J, Mestas J, Burdick MD et al. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol. Cancer 5, 56 (2006).
  • Schimanski CC, Schwald S, Simiantonaki N et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin. Cancer Res. 11(5), 1743–1750 (2005).
  • Cabioglu N, Yazici MS, Arun B et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin. Cancer Res. 11(16), 5686–5693 (2005).
  • Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2(8), 563–572 (2002).
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 420(6917), 860–867 (2002).
  • Chen Q, Zhang XH, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20(4), 538–549 (2011).
  • Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 70(14), 6071–6082 (2010).
  • Roland CL, Dineen SP, Toombs JE et al. Tumor-derived intercellular adhesion molecule-1 mediates tumor-associated leukocyte infiltration in orthotopic pancreatic xenografts. Exp. Biol. Med. (Maywood) 235(2), 263–270 (2010).
  • Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP. Human neutrophils facilitate tumor cell transendothelial migration. Am. J. Physiol. Cell Physiol. 280(4), C814–C822 (2001).
  • Slattery MJ, Dong C. Neutrophils influence melanoma adhesion and migration under flow conditions. Int. J. Cancer 106(5), 713–722 (2003).
  • Liang S, Slattery MJ, Dong C. Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp. Cell Res. 310(2), 282–292 (2005).
  • Danila DC, Heller G, Gignac GA et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin. Cancer Res. 13(23), 7053–7058 (2007).
  • Cohen SJ, Punt CJ, Iannotti N et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26(19), 3213–3221 (2008).
  • Miller MC, Doyle GV, Terstappen LW. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. J. Oncol. 2010, 617421 (2010).
  • Punnoose EA, Atwal SK, Spoerke JM et al. Molecular biomarker analyses using circulating tumor cells. PLoS ONE 5(9), e12517 (2010).
  • Riethdorf S, Fritsche H, Müller V et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin. Cancer Res. 13(3), 920–928 (2007).
  • de Bono JS, Scher HI, Montgomery RB et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14(19), 6302–6309 (2008).
  • Nagrath S, Sequist LV, Maheswaran S et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–1239 (2007).
  • Maheswaran S, Sequist LV, Nagrath S et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359(4), 366–377 (2008).
  • Akiyoshi S, Fukagawa T, Ueo H et al. Clinical significance of miR-144-ZFX axis in disseminated tumour cells in bone marrow in gastric cancer cases. Br. J. Cancer 107(8), 1345–1353 (2012).
  • Blümke K, Bilkenroth U, Schmidt U et al. Detection of circulating tumor cells from renal carcinoma patients: experiences of a two-center study. Oncol. Rep. 14(4), 895–899 (2005).
  • Wong SC, Chan CM, Ma BB et al. Clinical significance of cytokeratin 20-positive circulating tumor cells detected by a refined immunomagnetic enrichment assay in colorectal cancer patients. Clin. Cancer Res. 15(3), 1005–1012 (2009).
  • Wong SC, Ng SS, Cheung MT et al. Clinical significance of CDX2-positive circulating tumour cells in colorectal cancer patients. Br. J. Cancer 104(6), 1000–1006 (2011).
  • Magbanua MJ, Park JW. Isolation of circulating tumor cells by immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS) for molecular profiling. Methods doi:10.1016/j.ymeth.2013.07.029 (2013) ( Epub ahead of print).
  • Magbanua MJ, Sosa EV, Scott JH et al. Isolation and genomic analysis of circulating tumor cells from castration resistant metastatic prostate cancer. BMC Cancer 12, 78 (2012).
  • Magbanua MJ, Sosa EV, Roy R et al. Genomic profiling of isolated circulating tumor cells from metastatic breast cancer patients. Cancer Res. 73(1), 30–40 (2013).
  • Alix-Panabières C, Brouillet JP, Fabbro M et al. Characterization and enumeration of cells secreting tumor markers in the peripheral blood of breast cancer patients. J. Immunol. Methods 299(1–2), 177–188 (2005).
  • Alix-Panabières C, Vendrell JP, Slijper M et al. Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast Cancer Res. 11(3), R39 (2009).
  • Alix-Panabières C, Riethdorf S, Pantel K. Circulating tumor cells and bone marrow micrometastasis. Clin. Cancer Res. 14(16), 5013–5021 (2008).
  • Denève E, Riethdorf S, Ramos J et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin. Chem. 59(9), 1384–1392 (2013).
  • Pantel K, Denève E, Nocca D et al. Circulating epithelial cells in patients with benign colon diseases. Clin. Chem. 58(5), 936–940 (2012).
  • Rosenberg R, Gertler R, Friederichs J et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry 49(4), 150–158 (2002).
  • Vona G, Sabile A, Louha M et al. Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am. J. Pathol. 156(1), 57–63 (2000).
  • Desitter I, Guerrouahen BS, Benali-Furet N et al. A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res. 31(2), 427–441 (2011).
  • Vona G, Estepa L, Béroud C et al. Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 39(3), 792–797 (2004).
  • Lin HK, Zheng S, Williams AJ et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. 16(20), 5011–5018 (2010).
  • Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253(2), 180–204 (2007).
  • Van der Auwera I, Peeters D, Benoy IH et al. Circulating tumour cell detection: a direct comparison between the CellSearch System, the AdnaTest and CK-19/mammaglobin RT-PCR in patients with metastatic breast cancer. Br. J. Cancer 102(2), 276–284 (2010).
  • Ignatiadis M, Kallergi G, Ntoulia M et al. Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin. Cancer Res. 14(9), 2593–2600 (2008).
  • Reinholz MM, Kitzmann KA, Tenner K et al. Cytokeratin-19 and mammaglobin gene expression in circulating tumor cells from metastatic breast cancer patients enrolled in North Central Cancer Treatment Group trials, N0234/336/436/437. Clin. Cancer Res. 17(22), 7183–7193 (2011).
  • Powell AA, Talasaz AH, Zhang H et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7(5), e33788 (2012).
  • Cann GM, Gulzar ZG, Cooper S et al. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS ONE 7(11), e49144 (2012).
  • Peeters DJ, De Laere B, Van den Eynden GG et al. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br. J. Cancer 108(6), 1358–1367 (2013).
  • Heitzer E, Auer M, Gasch C et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 73(10), 2965–2975 (2013).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.