218
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Divide and conquer: subproteomic approaches toward gastric cancer biomarker and drug target discovery

, , &

References

  • Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN. 2008. Int J Cancer 2010;127(2):2893-917
  • Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006;24(2):2137-50
  • Leung WK, Wu MS, Kakugawa Y, et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol 2008;9(2):279-87
  • Lam KW, Lo SC. Discovery of diagnostic serum biomarkers of gastric cancer using proteomics. Proteomics Clin Appl 2008;2(2):219-28
  • Satoh T, Omuro Y, Sasaki Y, et al. Pharmacokinetic analysis of capecitabine and cisplatin in combination with trastuzumab in Japanese patients with advanced HER2-positive gastric cancer. Cancer Chemother Pharmacol 2012;69(2):949-55
  • Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010;376(2):687-97
  • Lordick F, Kang YK, Chung HC, et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol 2013;14(2):490-9
  • Ohtsu A, Shah MA, Van Cutsem E, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 2011;29(2):3968-76
  • Paulo JA, Lee LS, Banks PA, et al. Proteomic analysis of formalin-fixed paraffin-embedded pancreatic tissue using liquid chromatography tandem mass spectrometry. Pancreas 2012;41(2):175-85
  • Liu NQ, Braakman RB, Stingl C, et al. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue. J Mammary Gland Biol Neoplasia 2012;17(2):155-64
  • Wulfkuhle JD, Sgroi DC, Krutzsch H, et al. Proteomics of human breast ductal carcinoma in situ. Cancer Res 2002;62(2):6740-9
  • Sousa JF, Ham AJ, Whitwell C, et al. Proteomic profiling of paraffin-embedded samples identifies metaplasia-specific and early-stage gastric cancer biomarkers. Am J Pathol 2012;181(2):1560-72
  • Kim HK, Reyzer ML, Choi IJ, et al. Gastric cancer-specific protein profile identified using endoscopic biopsy samples via MALDI mass spectrometry. J Proteome Res 2010;9(8):4123-30. Erratum in 2011;10(2):361
  • Morita Y, Ikegami K, Goto-Inoue N, et al. Imaging mass spectrometry of gastric carcinoma in formalin-fixed paraffin-embedded tissue microarray. Cancer Sci 2010;101(2):267-73
  • Chong PK, Lee H, Loh MC, et al. Upregulation of plasma C9 protein in gastric cancer patients. Proteomics 2010;10(2):3210-21
  • Rumfeld WR, Morgan BP, Campbell AK. The ninth complement component in rheumatoid arthritis, Behcet’s disease and other rheumatic diseases. Br J Rheumatol 1986;25(2):266-70
  • Hortin GL. The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 2006;52(2):1223-37
  • Karpova MA, Moshkovskii SA, Toropygin IY, Archakov AI. Cancer-specific MALDI-TOF profiles of blood serum and plasma: biological meaning and perspectives. J Proteomics 2010;73(3):537-51
  • Nelson RW, Krone JR, Bieber AL, Williams P. Mass spectrometric immunoassay. Anal Chem 1995;67(2):1153-8
  • Nelson RW, Dogruel D, Krone JR, Williams P. Peptide characterization using bioreactive mass spectrometer probe tips. Rapid Commun Mass Spectrom 1995;9(2):1380-5
  • Hsu PI, Chen CH, Hsieh CS, et al. Alpha1-antitrypsin precursor in gastric juice is a novel biomarker for gastric cancer and ulcer. Clin Cancer Res 2007;13(2):876-83
  • Hsu PI, Chen CH, Hsiao M, et al. Diagnosis of gastric malignancy using gastric juice alpha1-antitrypsin. Cancer Epidemiol Biomarkers Prev 2010;19(2):405-11
  • Proteiomic Fingerprints of Gastric Juice. Available from: http://clinicaltrialsfeeds.org/clinical-trials/show/NCT00834236
  • Kelly-Spratt KS, Kasarda AE, Igra M, Kemp CJ. A mouse model repository for cancer biomarker discovery. J Proteome Res 2008;7(2):3613-18
  • Gomes C, Osorio H, Pinto MT, et al. Expression of ST3GAL4 leads to SLe(x) expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells. PLoS One 2013;8(6):e66737
  • Chong PK, Lee H, Zhou J, et al. ITIH3 is a potential biomarker for early detection of gastric cancer. J Proteome Res 2010;9(2):3671-9
  • Juan HF, Chen JH, Hsu WT, et al. Identification of tumor-associated plasma biomarkers using proteomic techniques: from mouse to human. Proteomics 2004;4(2):2766-75
  • Penno MA, Klingler-Hoffmann M, Brazzatti JA, et al. 2D-DIGE analysis of sera from transgenic mouse models reveals novel candidate protein biomarkers for human gastric cancer. J proteomics 2012;77:40-58
  • Gastric cancer detection test. Available from: http://adelaideresearch.technologypublisher.com/technology/11386
  • Choong LY, Lim YP. Biological models of breast cancer: one size does not fit all. Expert Rev Proteome 2011;8(2):5-7
  • Oppermann FS, Klammer M, Bobe C, et al. Comparison of SILAC and mTRAQ quantification for phosphoproteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 2013;12(2):4089-100
  • Nagaraj N, Kulak NA, Cox J, et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell Proteomics 2012;11(3):M111 013722
  • Hebert AS, Richards AL, Bailey DJ, et al. The one hour yeast proteome. Mol Cell Proteomics 2014;13(2):339-47
  • Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013;14(6):e218-28
  • Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 2008;29(2):22-8
  • Lukaszewicz-Zajac M, Mroczko B, Szmitkowski M. Gastric cancer - The role of matrix metalloproteinases in tumor progression. Clin Chim Acta 2011;412(19-20):1725-30
  • Bonin-Debs AL, Boche I, Gille H, Brinkmann U. Development of secreted proteins as biotherapeutic agents. Expert Opin Biol Ther 2004;4(2):551-8
  • Chang YH, Wu CC, Chang KP, et al. Cell secretome analysis using hollow fiber culture system leads to the discovery of CLIC1 protein as a novel plasma marker for nasopharyngeal carcinoma. J Proteome Res 2009;8(2):5465-74
  • Tjalsma H, Bolhuis A, Jongbloed JD, et al. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000;64(2):515-47
  • Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett 2006;107(2):102-8
  • Makridakis M, Vlahou A. Secretome proteomics for discovery of cancer biomarkers. J Proteomics 2010;73(2):2291-305
  • Yang Y, Lim SK, Choong LY, et al. Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. J Proteome Res 2010;9(2):4767-78
  • Marimuthu A, Subbannayya Y, Sahasrabuddhe NA, et al. SILAC-based quantitative proteomic analysis of gastric cancer secretome. Proteomics Clin Appl 2013;7(5-6):355-66
  • SignalP 3.0 Server. Available from: www.cbs.dtu.dk/services/SignalP-3.0/
  • SecretomeP 2.0 Server. Available from: www.cbs.dtu.dk/services/SecretomeP/
  • Exosome protein, RNA and lipid database. Available from: http://exocarta.org/
  • Qu JL, Qu XJ, Zhao MF, et al. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 2009;41(2):875-80
  • Gu J, Qian H, Shen L, et al. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-beta/Smad pathway. PLoS One 2012;7(12):e52465
  • Kampen KR. Membrane proteins: the key players of a cancer cell. J Membr Biol 2011;242(2):69-74
  • Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007;7(2):79-94
  • Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 2004;4(2):361-70
  • Shukla HD, Vaitiekunas P, Cotter RJ. Advances in membrane proteomics and cancer biomarker discovery: current status and future perspective. Proteomics 2012;12(19-20):3085-104
  • Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell 2006;126(2):855-67
  • Guo T, Fan L, Ng WH, et al. Multidimensional Identification of Tissue Biomarkers of Gastric Cancer. J Proteome Res 2012;11(6):3405-13
  • Schindler J, Nothwang HG. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics 2006;6(2):5409-17
  • Morre DM, Morre DJ. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells. Chromatogr B Analyt Technol Biomed Life Sci 2000;743(1-2):377-87
  • Yang Y, Toy W, Choong LY, et al. Discovery of SLC3A2 cell membrane protein as a potential gastric cancer biomarker: implications in molecular imaging. J Proteome Res 2012;11(2):5736-47
  • Zhao Y, Zhang W, Kho Y, Zhao Y. Proteomic analysis of integral plasma membrane proteins. Anal Chem 2004;76(2):1817-23
  • Conrotto P, Roesli C, Rybak J, et al. Identification of new accessible tumor antigens in human colon cancer by ex vivo protein biotinylation and comparative mass spectrometry analysis. Int J Cancer 2008;123(2):2856-64
  • Tjalsma H, Pluk W, van den Heuvel LP, et al. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface. Biochim Biophys Acta 2006;1764(2):1607-17
  • Castronovo V, Waltregny D, Kischel P, et al. A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics 2006;5(2):2083-91
  • Mi W, Jia W, Zheng Z, et al. Surface glycoproteomic analysis of hepatocellular carcinoma cells by affinity enrichment and mass spectrometric identification. Glycoconj J 2012;29(5-6):411-24
  • Warburg O. On respiratory impairment in cancer cells. Science 1956;124(2):269-70
  • Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 2010;11:25-44
  • Foster LJ, de Hoog CL, Zhang Y, et al. A mammalian organelle map by protein correlation profiling. Cell 2006;125(2):187-99
  • McDonald T, Sheng S, Stanley B, et al. Expanding the subproteome of the inner mitochondria using protein separation technologies - One- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mol Cell Proteomics 2006;5(2):2392-411
  • Distler AM, Kerner J, Hoppel CL. Proteomics of mitochondrial inner and outer membranes. Proteomics 2008;8(2):4066-82
  • Kim HK, Park WS, Kang SH, et al. Mitochondrial alterations in human gastric carcinoma cell line. Am J Physiol Cell Physiol 2007;293(2):C761-71
  • Zhang Q, Raje V, Yakovlev VA, et al. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem 2013;288(2):31280-8
  • Schirmer EC, Florens L, Guan T, et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 2003;301(2):1380-2
  • Dreger M, Bengtsson L, Schoneberg T, et al. Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci USA 2001;98(2):11943-8
  • Andersen JS, Lyon CE, Fox AH, et al. Directed proteomic analysis of the human nucleolus. Curr Biol 2002;12(2):1-11
  • Albrethsen J, Knol JC, Jimenez CR. Unravelling the nuclear matrix proteome. J proteomics 2009;72(2):71-81
  • Albrethsen J, Knol JC, Piersma SR, et al. Subnuclear proteomics in colorectal cancer: identification of proteins enriched in the nuclear matrix fraction and regulation in adenoma to carcinoma progression. Mol Cell Proteome 2010;9(2):988-1005
  • Dreger M, Otto H, Neubauer G, et al. Identification of phosphorylation sites in native lamina-associated polypeptide 2 beta. Biochemistry 1999;38(2):9426-34
  • Fey EG, Wan KM, Penman S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition. J Cell Biol 1984;98(2):1973-84
  • Kim EH, Misek DE. Glycoproteomics-based identification of cancer biomarkers. Int J Proteomics 2011;2011:601937
  • Bones J, Byrne JC, O’Donoghue N, et al. Glycomic and glycoproteomic analysis of serum from patients with stomach cancer reveals potential markers arising from host defense response mechanisms. J Proteome Res 2011;10(2):1246-65
  • Li K, Sun Z, Zheng JY, et al. In-depth research of multidrug resistance related cell surface glycoproteome in gastric cancer. J proteomics 2013;82:130-40
  • Gomes C, Almeida A, Ferreira JA, et al. Glycoproteomic analysis of serum from patients with gastric precancerous lesions. J Proteome Res 2013;12(2):1454-66
  • Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science 2002;298(2):1912-34
  • Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000;19(2):5548-57
  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001;411(2):355-65
  • Shawver LK, Slamon D, Ullrich A. Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 2002;1(2):117-23
  • Madhusudan S, Ganesan TS. Tyrosine kinase inhibitors in cancer therapy. Clin Biochem 2004;37(2):618-35
  • Pytel D, Sliwinski T, Poplawski T, et al. Tyrosine kinase blockers: new hope for successful cancer therapy. Anticancer Agents Med Chem 2009;9(2):66-76
  • Becker JC, Muller-Tidow C, Serve H, et al. Role of receptor tyrosine kinases in gastric cancer: new targets for a selective therapy. World J Gastroenterol 2006;12(2):3297-305
  • Chong PK, Lee H, Kong JW, et al. Phosphoproteomics, oncogenic signaling and cancer research. Proteomics 2008;8:4370-82
  • Dengjel J, Kratchmarova I, Blagoev B. Receptor tyrosine kinase signaling: a view from quantitative proteomics. Mol Biosyst 2009;5(2):1112-21
  • Chen Y, Choong LY, Lin Q, et al. Differential expression of novel tyrosine kinase substrates during breast cancer development. Mol Cell Proteomics 2007;6(2):2072-87
  • Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131(2):1190-203
  • Walters DK, Mercher T, Gu TL, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006;10(2):65-75
  • Ashman K, Villar EL. Phosphoproteomics and cancer research. Clin Transl Oncol 2009;11(2):356-62
  • Guo T, Lee SS, Ng WH, et al. Global molecular dysfunctions in gastric cancer revealed by an integrated analysis of the phosphoproteome and transcriptome. Cell Mol Life Sci 2011;68(2):1983-2002
  • Jia M, Lin KW, Souchelnytskyi S. Phosphoproteomics: detection, identification and importance of protein phosphorylation. In: Leung H-C, editor. Integrative proteomics. 2012. p. 215-32
  • Pinkse MW, Uitto PM, Hilhorst MJ, et al. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 2004;76(2):3935-43
  • Yan GR, Ding W, Xu SH, et al. Characterization of phosphoproteins in gastric cancer secretome. OMICS 2011;15(1-2):83-90
  • Yan GR, Chen N-P, Huang Y-D, et al. Signaling networks in gastric cancer cells revealed by phosphoproteomics. J Proteomics Bioinform 2010;3(4):113-20
  • Iliuk AB, Tao WA. Is phosphoproteomics ready for clinical research? Clin Chim Acta 2013;420:23-7
  • Phosphoproteomic patterns as a novel biomarker for aurora and polo-like kinase inhibitors in non-small cell lung cancer. Available from: http://clinicaltrials.gov/show/NCT01510405
  • Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 2006;6(2):776-88
  • Low TY, Magliozzi R, Guardavaccaro D, Heck AJ. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics. Proteomics 2013;13(3-4):526-37
  • Hjerpe R, Aillet F, Lopitz-Otsoa F, et al. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. Embo Rep 2009;10(2):1250-8
  • Seyfried NT, Xu P, Duong DM, et al. Systematic approach for validating the ubiquitinated proteome. Anal Chem 2008;80(2):4161-9
  • Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F, et al. Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J proteomics 2012;75(2):2998-3014
  • Vasilescu J, Smith JC, Ethier M, Figeys D. Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J Proteome Res 2005;4(2):2192-200
  • Denis NJ, Vasilescu J, Lambert JP, et al. Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics 2007;7(2):868-74
  • Jia H, Liu C, Ge F, et al. Identification of ubiquitinated proteins from human multiple myeloma U266 cells by proteomics. Biomed Environ Sci 2011;24(2):422-30
  • Qin X, Chen S, Qiu Z, et al. Proteomic analysis of ubiquitination-associated proteins in a cisplatin-resistant human lung adenocarcinoma cell line. Int J Mol Med 2012;29(2):791-800
  • Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer 2013;13(2):37-50
  • Stallcup MR. Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 2001;20(2):3014-20
  • Arif M, Senapati P, Shandilya J, Kundu TK. Protein lysine acetylation in cellular function and its role in cancer manifestation. Biochim Biophys Acta 2010;1799(10-12):702-16
  • Xu W, Li Y, Liu C, Zhao S. Protein lysine acetylation guards metabolic homeostasis to fight against cancer. Oncogene 2013. [Epub ahead of print]
  • Chuikov S, Kurash JK, Wilson JR, et al. Regulation of p53 activity through lysine methylation. Nature 2004;432(2):353-60
  • Tang Y, Zhao W, Chen Y, et al. Acetylation is indispensable for p53 activation. Cell 2008;133(2):612-26
  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, et al. Regulation of E2F1 activity by acetylation. EMBO J 2000;19(2):662-71
  • Yamaguchi Y, Kurokawa M, Imai Y, et al. AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J Biol Chem 2004;279(2):15630-8
  • Okanishi H, Kim K, Masui R, Kuramitsu S. Acetylome with structural mapping reveals the significance of lysine acetylation in Thermus thermophilus. J Proteome Res 2013;12(2):3952-68
  • Boisvert FM, Cote J, Boulanger MC, Richard S. A proteomic analysis of arginine-methylated protein complexes. Mol Cell Proteome 2003;2(12):1319-30
  • Zhou Q, Chaerkady R, Shaw PG, et al. Screening for therapeutic targets of vorinostat by SILAC-based proteomic analysis in human breast cancer cells. Proteomics 2010;10(2):1029-39
  • Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer 2013;13(2):727-38
  • Raja UM, Gopal G, Rajkumar T. Intragenic DNA methylation concomitant with repression of ATP4B and ATP4A gene expression in gastric cancer is a potential serum biomarker. Asian Pac J Cancer Prev 2012;13(2):5563-8
  • Leth-Larsen R, Lund RR, Ditzel HJ. Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 2010;9(2):1369-82
  • Vayssier-Taussat M, Kreps SE, Adrie C, et al. Mitochondrial membrane potential: a novel biomarker of oxidative environmental stress. Environ Health Perspect 2002;110(2):301-5
  • Wang CS, Wu TL, Tsao KC, Sun CF. Serum TIMP-1 in gastric cancer patients: a potential prognostic biomarker. Ann Clin Lab Sci 2006;36(2):23-30
  • Xia HH, Yang Y, Chu KM, et al. Serum macrophage migration-inhibitory factor as a diagnostic and prognostic biomarker for gastric cancer. Cancer 2009;115(2):5441-9
  • Unleash the power of scientific visualization. Available from: www.somersault1824.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.