394
Views
36
CrossRef citations to date
0
Altmetric
Reviews

The impact of microgravity-based proteomics research

, , , , , , , & show all

References

  • Baldwin KM. Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle. Med Sci Sports Exerc 1996;28:983-7
  • Babbick M, Dijkstra C, Larkin OJ, et al. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation). Adv Space Res 2007;39(7):1182-9
  • Hammond TG, Lewis FC, Goodwin TJ, et al. Gene expression in space. Nat Med 1999;5:359
  • Grimm D, Wise P, Lebert M, et al. How and why does the proteome respond to microgravity? Expert Rev Proteomics 2011;8(1):13-27
  • Pietsch J, Bauer J, Egli M, et al. The effects of weightlessness on the human organism and mammalian cells. Curr Mol Med 2011;11(5):350-64
  • Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblast growth activation. Exp Cell Res 1996;224:103-9
  • Lewis ML, Reynolds JL, Cubano LA, et al. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 1998;12:1007-18
  • Schatten H, Lewis ML, Chakrabarti A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 2001;49:399-418
  • Uva BM, Masini MA, Sturla M, et al. Microgravity-induced apoptosis in cultured glial cells. Eur J Histochem 2002;46:209-14
  • Vassy J, Portet S, Beil M, et al. The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J 2001;15:1104-6
  • Grosse J, Wehland M, Pietsch J, et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J 2012;26(12):5124-40
  • Kordyum EL. Plant cell gravisensitivity and adaptation to microgravity. Plant Biol 2014;16(Suppl 1):79-90
  • Gao H, Liu Z, Zhang L. Secondary metabolism in simulated microgravity and space flight. Protein Cell 2011;2(11):858-61
  • Pietsch J, Ma X, Wehland M, et al. Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 Space mission. Biomaterials 2013;34(31):7694-705
  • Scherer GF, Quader H. Increased endocytosis of fluorescent phospholipid in tobacco pollen in microgravity and inhibition by verapamil. Plant Biol 2014;16(Suppl 1):107-12
  • Pletser V. Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns. Acta Astronaut 2004;55(10):829-54
  • Grosse J, Wehland M, Pietsch J, et al. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB J 2012;26(2):639-55
  • Ulbrich C, Pietsch J, Grosse J, et al. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: Relationship between the extracellular matrix and the cytoskeleton. Cell Physiol Biochem 2011;28(2):185-98
  • Ruyters G, Friedrich U. From the Bremen drop tower to the international space station ISS–Ways to weightlessness in the German space life sciences program. Signal Transduction 2006;6(6):397-405
  • Herranz R, Anken R, Boonstra J, et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 2013;13(1):1-17
  • Hemmersbach R, Strauch SM, Seibt D, Schuber M. Comparative studies on gravisensitive protists on ground (2D and 3D clinostats) and in microgravity. Microgravity – Sci Technol 2006;18:257-9
  • van Loon JJWA. Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 2007;39:1161-5
  • Patel MJ, Liu W, Sykes MC, et al. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J Cell Biochem 2007;101:587-99
  • Schwarzenberg M, Pippia P, Meloni MA, et al. Signal transduction in T lymphocytes - A comparison of the data from space, the free fall machine and the random positioning machine. Adv Space Res 1999;24(6):793-800
  • Ma X, Pietsch J, Wehland M, et al. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J 2014;28(2):813-35
  • Manzano AI, Van Loon JJ, Christianen PC, et al. Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics 2012;13(1):105
  • Lottspeich F, Zorbas H. Bioanalytik. Spektrum Akademischer Verlag; Heidelberg, Germany: 1998. p. 1100
  • Longobardi GA. Flow cytometry. Wiley-Blackwell; Weinheim, Germany: 2012
  • Luminex. Available from: www.luminexcorp.com/Partners/LifeScienceResearchPartners/rules-based-medicine
  • Infanger M, Ulbrich C, Baatout S, et al. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J Cell Biochem 2007;101:1439-55
  • Friedman DB, Hill S, Keller JW, et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 2004;4(3):793-811
  • Obermaier C, Jankowski V, Schmutzler C, et al. Free-flow isoelectric focusing of proteins remaining in cell fragments following sonication of thyroid carcinoma cells. Electrophoresis 2005;26:2109-16
  • Pietsch J, Kussian R, Sickmann A, et al. Application of free-flow IEF to identify protein candidates changing under microgravity conditions. Proteomics 2010;10(5):904-13
  • Ishihama Y, Oda Y, Tabata T, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 2005;4:1265-72
  • Pietsch J, Bauer J, Weber G, et al. Proteome analysis of thyroid cancer cells after long-term exposure to a random positioning machine. Microgravity Sci Technol 2011;23(4):381-90
  • Ma X, Sickmann A, Pietsch J, et al. Proteomic differences between microvascular endothelial cells and the EA.hy926 cell line forming three-dimensional structures. Proteomics 2014;14:689-98
  • Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999;17:994-9
  • Wildgruber R, Weber G, Wise P, et al. Free flow electrophoresis in proteome sample preparation. Proteomics 2014;14:629-36
  • Pietsch J, Sickmann A, Weber G, et al. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 2011;11:2095-104
  • Cox J, Mann M. Quantitative, high-resolution proteomics for data driven systems biology. Annu Rev Biochem 2011;80:273-99
  • Mann M, Kulak NA, Nagaraj N, et al. The coming age of complete accurate and ubiquitous proteomes. Mol Cell 2013;49:583-90
  • Burkhart JM, Vaudel M, Gambaryan S, et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012;120(15):E73-82
  • Mermel LA. Infection prevention and control during prolonged human space travel. Clin Infect Dis 2013;56:123-30
  • Crucian B, Stowe R, Quiriarte H, et al. Monocyte phenotype and cytokine production profiles are dysregulated by short duration spaceflight. Aviat Space Environ Med 2011;82:857-62
  • Chopra V, Fadl AA, Sha J, et al. Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions. J Toxicol Environ Health A 2006;69:1345-70
  • Crabbé A, Schurr MJ, Monsieurs P, et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 2011;77(4):1221-30
  • Mastroleo F, Van Houdt R, Leroy B, et al. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J 2009;3(12):1402-19
  • Häder DP. Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch Microbiol 1987;147:179-83
  • Nasir A, Strauch SM, Becker I, et al. The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol (Stuttg) 2014;16(Suppl 1):113-19
  • Correll MJ, Pyle TP, Millar KD, et al. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 2013;238:519-33
  • Zupanska AK, Denison FC, Ferl RJ, Paul AL. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Am J Bot 2013;100:235-48
  • Paul AL, Manak MS, Mayfield JD, et al. Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. Astrobiology 2011;11:743-58
  • Paul AL, Zupanska AK, Ostrow DT, et al. Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 2012;12:40-56
  • Salmi ML, Roux SJ. Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 2008;229:151-9
  • Stutte GW, Monje O, Hatfield RD, et al. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 2006;224:1038-49
  • Barjaktarovic Z, Babbick M, Nordheim A, et al. Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper- and simulated micro-gravity. Microgravity Sci Technol 2009;21:191-6
  • Barjaktarovic Z, Schütz W, Madlung J, et al. Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J Exp Bot 2009;60:779-89
  • Wang H, Zheng HQ, Sha W, et al. A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation. J Exp Bot 2006;57:827-35
  • Tan C, Wang H, Zhang Y, et al. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Sci 2011;9:1-16
  • Kozeko L, Kordyum E. The stress protein level under clinorotation in context of the seedling developmental program and the stress response. Microgravity Sci Technol 2006;18(3-4):254-6
  • Herranz R, Manzano AI, Van Loon JJ, et al. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology 2013;13(3):217-24
  • Hausmann N, Fengler S, Hennig A, et al. Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biol (Stuttg) 2014;16(Suppl 1):120-8
  • Ma Y, Cheng Z, Wang W, Sun Y. Proteomic analysis of high yield rice variety mutated from spaceflight. Adv Space Res 2007;40:535-9
  • Stout SC, Porterfield DM, Briarty LG, et al. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity. Int J Plant Sci 2001;162(2):249-55
  • Sastry KJ, Nehete PN, Savary CA. Impairment of antigen-specific cellular immune responses under simulated microgravity conditions. In Vitro Cell Dev Biol Anim 2001;37(4):203-8
  • Grimm D, Bauer J, Kossmehl P, et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 2002;16:6-604-6
  • Grimm D, Infanger M, Westphal K, et al. A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A 2009;15(8):2267-75
  • Cameron DF, Hushen JJ, Nazian SJ, et al. Formation of Sertoli cell-enriched tissue constructs utilizing simulated microgravity technology. Ann N Y Acad Sci 2001;944:420-8
  • Hochleitner B, Hengster P, Duo L, et al. A novel bioartificial liver with culture of porcine hepatocyte aggregates under simulated microgravity. Artif Organs 2005;29:58-66
  • Marquette ML, Byerly D, Sognier M. A novel in vitro three-dimensional skeletal muscle model. In Vitro Cell Dev Biol Anim 2007;43:255-63
  • Ulbrich C, Westphal K, Pietsch J, et al. Characterization of human chondrocytes exposed to simulated microgravity. Cell Physiol Biochem 2010;25(4-5):551-60
  • Semov A, Semova N, Lacelle C, et al. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts. FASEB J 2002;16(8):899-901
  • Lewis ML, Cubano LA, Zhao B, et al. cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J 2001;15(10):1783-5
  • Hughes-Fulford M. Changes in gene expression and signal transduction in microgravity. J Gravit Physiol 2001;8(1):P1-4
  • Guo FJ, Li YL, Liu Y, et al. Identification of genes associated with tumor development in CaSki cells in the cosmic space. Mol Biol Rep 2012;39:6923-831
  • Ma X, Wehland M, Schulz H, et al. Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells. PLoS One 2013;8(5):e64402
  • Chang SH, Hia T. Gene regulation by RNA binding proteins and microRNAs in angiogenesis. Trends Mol Med 2011;17:650-8
  • Grimm D, Bauer J, Hofstädter F, et al. Characteristics of multicellular spheroids formed by primary cultures of human thyroid tumor cells. Thyroid 1997;7(6):859-65
  • Grimm D, Bauer J, Kromer E, et al. Human follicular and papillary thyroid carcinoma cells interact differently with human venous endothelial cells. Thyroid 1995;5(3):155-64
  • Grosse J, Grimm D, Westphal K, et al. Radiolabeled annexin V for imaging apoptosis in radiated human follicular thyroid carcinomas – is an individualized protocol necessary? Nucl Med Biol 2009;36(1):89-98
  • Pohl F, Grosse J, Grimm D, et al. Changes of apoptosis, p53, and bcl-2 by irradiation in poorly differentiated thyroid carcinoma cell lines: a prognostic marker for the prospect of therapeutic success? Thyroid 2010;20(2):159-66
  • Grosse J, Warnke E, Pohl F, et al. Impact of sunitinib on human thyroid cancer cells. Cell Physiol Biochem 2013;32(1):154-70
  • Schönberger J, Bauer J, Spruss T, et al. Establishment and characterization of the follicular thyroid carcinoma cell line ML-1. J Mol Med 2000;78(2):102-10
  • Kossmehl P, Shakibaei M, Cogoli A, et al. Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology 2003;144:4172-9
  • Infanger M, Kossmehl P, Shakibaei M, et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res 2006;324(2):267-77
  • Grun B, Benjamin E, Sinclair J, et al. Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prolif 2009;42:219-28
  • Pietsch J, Sickmann A, Weber G, et al. Metabolic enzyme diversity in different human thyroid cell lines and their sensitivity to gravitational forces. Proteomics 2012;12:2539-46
  • Kang S, Shim HS, Lee JS, et al. Molecular proteomics imaging of tumor interfaces by mass spectrometry. J Proteome Res 2010;9(2):1157-64
  • Pietsch J, Riwaldt S, Bauer J, et al. Interaction of proteins identified in human thyroid cells. Int J Mol Sci 2013;14:1164-78
  • Ma X, Wehland M, Aleshcheva G, et al. Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells. PLoS One 2013;8(7):e68140
  • Zhang Y, Wang H, Lai C, et al. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity. Astrobiology 2013;13:143-50
  • Grimm D, Bauer J, Ulbrich C, et al. Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity. Tissue Eng Part A 2010;16(5):1559-73
  • Infanger M, Kossmehl P, Shakibaei M, et al. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor. Apoptosis 2006;11(5):749-64
  • Chiu B, Wan JZ, Abley D, Akabutu J. Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity. Acta Astronaut 2005;56:918-22
  • Sanford GL, Ellerson D, Melhado-Gardner C, et al. Three-dimensional growth of endothelial cells in the microgravity-based rotating wall vessel bioreactor. In Vitro Cell Dev Biol Anim 2002;38:493-504
  • Versari S, Villa A, Bradamante S, Maier JA. Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim Biophys Acta 2007;1773(11):1645-52
  • Buravkova LB, Romanov YA. The role of cytoskeleton in cell changes under condition of simulated microgravity. Acta Astronaut 2001;48:647-50
  • Ulbrich C, Westphal K, Baatout S, et al. Effects of basic fibroblast growth factor on endothelial cells under conditions of simulated microgravity. J Cell Biochem 2008;104:1324-41
  • Carlsson SI, Bertilaccio MT, Ascari I, et al. Modulation of human endothelial cell behaviour in simulated microgravity. J Gravit Physiol 2002;9(1):P273-4
  • Aleshcheva G, Sahana J, Ma X, et al. Changes in morphology, gene expression and protein content in chondrocytes cultured on a Random Positioning Machine. PLoS One 2013;8(11):e79057
  • Cogoli A, Tschopp A, Fuchs-Bislin P. Cell sensitivity to gravity. Science 1984;225:228-30
  • Cogoli A, Tschopp A. Lymphocyte reactivity during spaceflight. Immunol Today 1985;6:1-4
  • Cogoli-Greuter M, Lovis P, Vadrucci S. Signal transduction in T cells: an overview. J Gravit Physiol 2004;11:53-6
  • Cogoli-Greuter M. Influence of microgravity on mitogen binding, motility and cytoskeleton patterns of T lymphocytes and jurkat cells-experiments on sounding rockets. Jpn J Aerospace Environ Med 1998;35(2):27-39
  • Maccarrone M, Battista N, Meloni M, et al. Creating conditions similar to those that occur during exposure of cells to microgravity induces apoptosis in human lymphocytes by 5-lipoxygenase-mediated mitochondrial uncoupling and cytochrome c release. J Leukoc Biol 2003;73(4):472-81
  • Hatton JP, Gaubert F, Cazenave JP, Schmitt D. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 2002;87(1):39-50
  • Boonyaratanakornkit JB, Cogoli A, Li CF, et al. Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 2005;19:2020-2
  • Stein TP. Weight, muscle and bone loss during space flight: another perspective. Eur J Appl Physiol 2013;113(9):2171-81
  • Davidson JM, Aquino AM, Woodward SC, Wilfinger WW. Sustained microgravity reduces intrinsic wound healing and growth factor responses in the rat. FASEB J 1998;13:325-9
  • Kaur I, Simons ER, Castro VA, et al. Changes in neutrophil functions in astronauts. Brain Behav Immun 2004;18:443-50
  • Kaur I, Simons ER, Castro VA, et al. Changes in monocyte functions of astronauts. Brain Behav Immun 2005;19:547-54
  • Crucian B, Stowe R, Quiriarte H, et al. Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat Space Environ Med 2011;82:857-62
  • Lesnyak A, Sonnenfeld G, Avery L, et al. Effect of SLS-2 spaceflight on immunologic parameters of rats. J Appl Physiol 1996;81:178-82
  • Heppener M. Spaceward ho! The future of humans in space. EMBO Rep 2008;9(Suppl 1):S4-12
  • Moriggi M, Vasso M, Fania C, et al. Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation. Proteomics 2010;10:3756-74
  • Pastushkova LKH, Kireev KS, Kononikhin AS, et al. Detection of renal and urinary tract proteins before and after spaceflight. Aviat Space Environ Med 2013;84(8):859-63
  • Rocchiccioli S, Congiu E, Boccardi C, et al. A proteomic study of microgravity cardiac effects: feature maps of label-free LC-MALDI data for differential expression analysis. Mol Biosyst 2010;6(11):2218-29
  • Ding Y, Zou J, Li Z, et al. Study of histopathological and molecular changes of rat kidney under simulated weightlessness and resistance training protective effect. PLoS One 2011;6(5):e20008
  • Wang J, Liu C, Li T, et al. Proteomic analysis of pulmonary tissue in tail-suspended rats under simulated weightlessness. J Proteomics 2012;75(17):5244-53
  • Gridley DS, Pecaut MJ, Green LM, et al. Effects of space flight on the expression of liver proteins in the mouse. J Proteomics Bioinform 2012;5(10):256-61
  • Oke Y, Kawano F, Nomura S, et al. Modulation of hippocampal proteins by exposure to simulated microgravity environment during the postnatal development in rats. Jpn J Aerospace Environ Med 2011;48(3):23-34
  • Tedeschi G, Pagliato L, Negroni M, et al. Protein pattern of Xenopus laevis embryos grown in simulated microgravity. Cell Biol Int 2011;35(3):249-58
  • Grimm D, Wehland M, Pietsch J, et al. Growing tissues in simulated and real microgravity – new methods for tissue engineering. Tissue Eng Part B Rev 2014. [Epub ahead of print]
  • Wehland M, Ma X, Braun M, et al. The impact of altered gravity and vibration on endothelial cells during a parabolic flight. Cell Physiol Biochem 2013;31(2-3):432-51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.