490
Views
13
CrossRef citations to date
0
Altmetric
Reviews

The urinary proteome and peptidome of renal cell carcinoma patients: a comparison of different techniques

, , , &

References

  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013;63:11-30
  • Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet 2009;373:1119-32
  • Moch H. An overview of renal cell cancer: pathology and genetics. Semin Cancer Biol 2013;23:3-9
  • Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol 2010;7:245-57
  • Young AC, Craven RA, Cohen D, et al. Analysis of VHL gene alterations and their relationship to clinical parameters in sporadic conventional renal cell carcinoma. Clin Cancer Res 2009;15:7582-92
  • Itsumi M, Tatsugami K. Immunotherapy for renal cell carcinoma. Clin Dev Immunol 2010;2010:284581
  • Van Poppel H. Efficacy and safety of nephron-sparing surgery. Int J Urol 2010;17:314-26
  • Di Lorenzo G, Autorino R, Sternberg CN. Metastatic renal cell carcinoma: recent advances in the targeted therapy era. Eur Urol 2009;56:959-71
  • Krajewski KM, Giardino AA, Zukotynski K, et al. Imaging in renal cell carcinoma. Hematol Oncol Clin North Am 2011;25:687-715
  • Escudier B, Eisen T, Porta C, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(Suppl 7):vii65-71
  • Nogueira M, Kim HL. Molecular markers for predicting prognosis of renal cell carcinoma. Urol Oncol 2008;26:113-24
  • Ozcan A, Liles N, Coffey D, et al. PAX2 and PAX8 expression in primary and metastatic mullerian epithelial tumors: a comprehensive comparison. Am J Surg Pathol 2011;35:1837-47
  • Schultz L, Chaux A, Albadine R, et al. Immunoexpression status and prognostic value of mTOR and hypoxia-induced pathway members in primary and metastatic clear cell renal cell carcinomas. Am J Surg Pathol 2011;35:1549-56
  • Shalabi A, Abassi Z, Awad H, et al. Urinary NGAL and KIM-1: potential association with histopathologic features in patients with renal cell carcinoma. World J Urol 2013;31:1541-5
  • Rodriguez-Antona C, Garcia-Donas J. Constitutional genetic variants as predictors of antiangiogenic therapy outcome in renal cell carcinoma. Pharmacogenomics 2012;13:1621-33
  • Yasir S, Herrera L, Gomez-Fernandez C, et al. CD10+ and CK7/RON- immunophenotype distinguishes renal cell carcinoma, conventional type with eosinophilic morphology from its mimickers. Appl Immunohistochem Mol Morphol 2012;20:454-61
  • Pan Z, Grizzle W, Hameed O. Significant variation of immunohistochemical marker expression in paired primary and metastatic clear cell renal cell carcinomas. Am J Clin Pathol 2013;140:410-18
  • Shin HI, Kim BH, Chang HS, et al. Expression of claudin-1 and -7 in clear cell renal cell carcinoma and its clinical significance. Korean J Urol 2011;52:317-22
  • Osunkoya AO, Cohen C, Lawson D, et al. Claudin-7 and claudin-8: immunohistochemical markers for the differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma. Hum Pathol 2009;40:206-10
  • Bing Z, Lal P, Lu S, et al. Role of carbonic anhydrase IX, alpha-methylacyl coenzyme a racemase, cytokeratin 7, and galectin-3 in the evaluation of renal neoplasms: a tissue microarray immunohistochemical study. Ann Diagn Pathol 2013;17:58-62
  • Klatte T, Streubel B, Wrba F, et al. Renal cell carcinoma associated with transcription factor E3 expression and Xp11.2 translocation: incidence, characteristics, and prognosis. Am J Clin Pathol 2012;137:761-8
  • Eichelberg C, Junker K, Ljungberg B, Moch H. Diagnostic and prognostic molecular markers for renal cell carcinoma: a critical appraisal of the current state of research and clinical applicability. Eur Urol 2009;55:851-63
  • Parker AS, Leibovich BC, Lohse CM, et al. Development and evaluation of BioScore: a biomarker panel to enhance prognostic algorithms for clear cell renal cell carcinoma. Cancer 2009;115:2092-103
  • Wang GC, Hsieh PS, Hsu HH, et al. Expression of cortactin and survivin in renal cell carcinoma associated with tumor aggressiveness. World J Urol 2009;27:557-63
  • Lau R, Pratt MA. The opposing roles of cellular inhibitor of apoptosis proteins in cancer. ISRN Oncol 2012;2012:928120
  • Gimenez-Bachs JM, Salinas-Sanchez AS, Serrano-Oviedo L, et al. Carbonic anhydrase IX as a specific biomarker for clear cell renal cell carcinoma: comparative study of Western blot and immunohistochemistry and implications for diagnosis. Scand J Urol Nephrol 2012;46:358-64
  • Valera VA, Li-Ning TE, Walter BA, et al. Protein expression profiling in the spectrum of renal cell carcinomas. J Cancer 2010;1:184-96
  • Kim DS, Choi YP, Kang S, et al. Panel of candidate biomarkers for renal cell carcinoma. J Proteome Res 2010;9:3710-19
  • Yang J, Li A, Yang Y, Li X. Identification of cyclophilin A as a potential prognostic factor for clear-cell renal cell carcinoma by comparative proteomic analysis. Cancer Biol Ther 2011;11:535-46
  • Yokomizo A, Takakura M, Kanai Y, et al. Use of quantitative shotgun proteomics to identify fibronectin 1 as a potential plasma biomarker for clear cell carcinoma of the kidney. Cancer Biomark 2011;10:175-83
  • Masui O, White NM, DeSouza LV, et al. Quantitative proteomic analysis in metastatic renal cell carcinoma reveals a unique set of proteins with potential prognostic significance. Mol Cell Proteomics 2013;12:132-44
  • Giribaldi G, Barbero G, Mandili G, et al. Proteomic identification of Reticulocalbin 1 as potential tumor marker in renal cell carcinoma. J Proteomics 2013;91:385-92
  • Vickers MM, Heng DY. Prognostic and predictive biomarkers in renal cell carcinoma. Target Oncol 2010;5:85-94
  • Flanigan RC, Polcari AJ, Hugen CM. Prognostic variables and nomograms for renal cell carcinoma. Int J Urol 2011;18:20-31
  • Patard JJ, Leray E, Cindolo L, et al. Multi-institutional validation of a symptom based classification for renal cell carcinoma. J Urol 2004;172:858-62
  • Decramer S, Gonzalez de Peredo A, Breuil B, et al. Urine in clinical proteomics. Mol Cell Proteomics 2008;7:1850-62
  • Candiano G, Santucci L, Petretto A, et al. 2D-electrophoresis and the urine proteome map: where do we stand? J Proteomics 2010;73:829-44
  • Albalat A, Mischak H, Mullen W. Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics 2011;8:615-29
  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 2004;101:13368-73
  • Thongboonkerd V. Practical points in urinary proteomics. J Proteome Res 2007;6:3881-90
  • HKUPP. Available from: www.hkupp.org
  • Eurokup. Available from: www.eurokup.org
  • Eurokup. Available from: www.eurokup.org/node/138
  • Nagaraj N, Mann M. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res 2011;10:637-45
  • Molina L, Salvetat N, Ameur RB, et al. Analysis of the variability of human normal urine by 2D-GE reveals a “public” and a “private” proteome. J Proteomics 2011;75:70-80
  • Ferguson K, Walker IA. A better way of sharing patient safety information is needed. BMJ 2012;345:e4475
  • Nolen BM, Orlichenko LS, Marrangoni A, et al. An extensive targeted proteomic analysis of disease-related protein biomarkers in urine from healthy donors. PLoS One 2013;8: e63368
  • Thongboonkerd V, Chutipongtanate S, Kanlaya R. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J Proteome Res 2006;5:183-91
  • Lee RS, Monigatti F, Briscoe AC, et al. Optimizing sample handling for urinary proteomics. J Proteome Res 2008;7:4022-30
  • Mischak H, Kolch W, Aivaliotis M, et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin Appl 2010;4:464-78
  • Zerefos PG, Aivaliotis M, Baumann M, Vlahou A. Analysis of the urine proteome via a combination of multi-dimensional approaches. Proteomics 2012;12:391-400
  • Adachi J, Kumar C, Zhang Y, et al. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 2006;7:R80
  • Kentsis A, Monigatti F, Dorff K, et al. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin Appl 2009;3:1052-61
  • Farrah T, Deutsch EW, Omenn GS, et al. State of the human proteome in 2013 as viewed through peptideatlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven human proteome project. J Proteome Res 2014;13:60-75
  • Pieper R, Gatlin CL, McGrath AM, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 2004;4:1159-74
  • Sim SH, Cairns DA, Perkins DN, et al. Changes in the urinary proteome post-operatively in renal cancer patients - a reflection of tumour or kidney removal? Proteomics Clin Appl 2009;3:1112-22
  • Alves G, Pereira DA, Sandim V, et al. Urine screening by Seldi-Tof, followed by biomarker identification, in a Brazilian cohort of patients with renal cell carcinoma (RCC). Int Braz J Urol 2013;39:228-39
  • Vasudev NS, Sim S, Cairns DA, et al. Pre-operative urinary cathepsin D is associated with survival in patients with renal cell carcinoma. Br J Cancer 2009;101:1175-82
  • Minamida S, Iwamura M, Kodera Y, et al. 14-3-3 protein beta/alpha as a urinary biomarker for renal cell carcinoma: proteomic analysis of cyst fluid. Anal Bioanal Chem 2011;401:245-52
  • Oh-Ishi M, Satoh M, Maeda T. Preparative two-dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins. Electrophoresis 2000;21:1653-69
  • Morrissey JJ, London AN, Luo J, Kharasch ED. Urinary biomarkers for the early diagnosis of kidney cancer. Mayo Clin Proc 2010;85:413-21
  • Morrissey JJ, Kharasch ED. The specificity of urinary aquaporin 1 and perilipin 2 to screen for renal cell carcinoma. J Urol 2013;189:1913-20
  • Morrissey JJ, Mobley J, Song J, et al. Urinary concentrations of aquaporin-1 and perilipin-2 in patients with renal cell carcinoma correlate with tumor size and stage but not grade. Urology 2014;83:256.e9-14
  • Thongboonkerd V, Malasit P. Renal and urinary proteomics: current applications and challenges. Proteomics 2005;5:1033-42
  • Zhang PL, Mashni JW, Sabbisetti VS, et al. Urine kidney injury molecule-1: a potential non-invasive biomarker for patients with renal cell carcinoma. Int Urol Nephrol 2014;46(2):379-88
  • Larrinaga G, Blanco L, Sanz B, et al. The impact of peptidase activity on clear cell renal cell carcinoma survival. Am J Physiol Renal Physiol 2012;303:F1584-91
  • Di Carlo A. Matrix metalloproteinase-2 and -9 in the sera and in the urine of human oncocytoma and renal cell carcinoma. Oncol Rep 2012;28:1051-6
  • Di Carlo A. Evaluation of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase-9 (MMP-9) and their complex MMP-9/NGAL in sera and urine of patients with kidney tumors. Oncol Lett 2013;5:1677-81
  • Di Carlo A. Matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 and -2 in sera and urine of patients with renal carcinoma. Oncol Lett 2014;7:621-6
  • Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 2010;20:161-8
  • Raimondo F, Morosi L, Corbetta S, et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol Biosyst 2013;9:1220-33
  • Del Boccio P, Raimondo F, Pieragostino D, et al. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes. Electrophoresis 2012;33:689-96
  • Terracciano R, Pasqua L, Casadonte F, et al. Derivatized mesoporous silica beads for MALDI-TOF MS profiling of human plasma and urine. Bioconjug Chem 2009;20:913-23
  • Boschetti E, Giorgio Righetti P. Hexapeptide combinatorial ligand libraries: the march for the detection of the low-abundance proteome continues. Biotechniques 2008;44:663-5
  • Chen L, Fatima S, Peng J, Leng X. SELDI protein chip technology for the detection of serum biomarkers for liver disease. Protein Pept Lett 2009;16:467-72
  • Rogers MA, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res 2003;63:6971-83
  • Wu DL, Zhang WH, Wang WJ, et al. Proteomic evaluation of urine from renal cell carcinoma using SELDI-TOF-MS and tree analysis pattern. Technol Cancer Res Treat 2008;7:155-60
  • Girault S, Chassaing G, Blais JC, et al. Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads. Anal Chem 1996;68:2122-6
  • Bosso N, Chinello C, Picozzi SC, et al. Human urine biomarkers of renal cell carcinoma evaluated by ClinProt. Proteomics Clin Appl 2008;2:1036-46
  • Klein J, Papadopoulos T, Mischak H, Mullen W. Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 2014;35(7):1060-4
  • Frantzi M, Metzger J, Banks RE, et al. Discovery and validation of urinary biomarkers for detection of renal cell carcinoma. J Proteomics 2014;98:44-58
  • Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods 2009;6:359-62
  • Hubner NC, Ren S, Mann M. Peptide separation with immobilized pI strips is an attractive alternative to in-gel protein digestion for proteome analysis. Proteomics 2008;8:4862-72
  • Zielinska DF, Gnad F, Wisniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 2010;141:897-907
  • Zhou H, Froehlich JW, Briscoe AC, Lee RS. The GlycoFilter: a simple and comprehensive sample preparation platform for proteomics, N-glycomics and glycosylation site assignment. Mol Cell Proteomics 2013;12:2981-91
  • Ozono S, Miyao N, Igarashi T, et al. Tumor doubling time of renal cell carcinoma measured by CT: collaboration of Japanese Society of Renal Cancer. Jpn J Clin Oncol 2004;34:82-5
  • Kassler A, Pittenauer E, Doerr N, Allmaier G. Ultrahigh-performance liquid chromatography/electrospray ionization linear ion trap Orbitrap mass spectrometry of antioxidants (amines and phenols) applied in lubricant engineering. Rapid Commun Mass Spectrom 2014;28:63-76
  • Li H, Wolff JJ, Van Orden SL, Loo JA. Native top-down electrospray ionization-mass spectrometry of 158 kda protein complex by high-resolution fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2013;86(1):317-20
  • Satoh T, Sato T, Kubo A, Tamura J. Tandem time-of-flight mass spectrometer with high precursor ion selectivity employing spiral ion trajectory and improved offset parabolic reflectron. J Am Soc Mass Spectrom 2011;22:797-803
  • Mullen W. The human urinary proteome: combinational approaches to comprehensive mapping. Expert Rev Proteomics 2012;9:375-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.