408
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Advances in sperm proteomics: best-practise methodology and clinical potential

, , , &

References

  • Oliva R. Protamines and male infertility. Hum Reprod Update 2006;12(4):417-35
  • Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 2014;20(1):40-62
  • Baker MA, Aitken RJ. Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev Proteomics 2009;6(6):691-705
  • Aitken RJ, Baker MA. The role of proteomics in understanding sperm cell biology. Int J Androl 2008;31(3):295-302
  • Wu TF, Chu DS. Sperm chromatin: fertile grounds for proteomic discovery of clinical tools. Mol Cell Proteomics 2008;7(10):1876-86
  • Oliva R, Martínez-Heredia J, Estanyol JM. Proteomics in the study of the sperm cell composition, differentiation and function. Syst Biol Reprod Med 2008;54(1):23-36
  • Oliva R, de Mateo S, Estanyol JM. Sperm cell proteomics. Proteomics 2009;9(4):1004-17
  • Oliva R, Castillo J. Proteomics and the genetics of sperm chromatin condensation. Asian J Androl 2011;13(1):24-30
  • Chocu S, Calvel P, Rolland AD, Pineau C. Spermatogenesis in mammals: proteomic insights. Syst Biol Reprod Med 2012;58(4):179-90
  • Dacheux J-L, Belleannée C, Guyonnet B, et al. The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med 2012;58(4):197-210
  • Dorus S, Skerget S, Karr TL. Proteomic discovery of diverse immunity molecules in mammalian spermatozoa. Syst Biol Reprod Med 2012;58(4):218-28
  • Oliva R. SBiRM: Focus on proteomics and reproduction. Preface. Syst Biol Reprod Med 2012;58(4):177-8
  • Rousseaux S, Khochbin S. Combined proteomic and in silico approaches to decipher post-meiotic male genome reprogramming in mice. Syst Biol Reprod Med 2012;58(4):191-6
  • Porambo JR, Salicioni AM, Visconti PE, Platt MD. Sperm phosphoproteomics: historical perspectives and current methodologies. Expert Rev Proteomics 2012;9(5):533-48
  • Nowicka-Bauer K, Kurpisz M. Current knowledge of the human sperm proteome. Expert Rev Proteomics 2013;10(6):591-605
  • De Mateo S, Estanyol J, Oliva R. Methods for the analysis of the sperm proteome. Methods Mol Biol 2013;927:411-22
  • Castillo J, Amaral A, Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology 2014;2(3):326-38
  • Mezquita C, Teng CS. Studies on sex-organ development. Changes in nuclear and chromatin composition and genomic activity during spermatogenesis in the maturing rooster testis. Biochem J 1977;164(1):99-111
  • Queralt R, Oliva R. Demonstration of trans-acting factors binding to the promoter region of the testis-specific rat protamine P1 gene. Biochem Biophys Res Commun 1995;208(2):802-12
  • Oliva R, Dixon G. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 1991;40:25-94
  • Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol 2007;8(9):227
  • Oliva R, Castillo J. Sperm nucleoproteins. In: Zini A, Agarwal A, editors. Sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. Springer Science Business Media; New York, US: 2011
  • De Mateo S, Castillo J, Estanyol JM, et al. Proteomic characterization of the human sperm nucleus. Proteomics 2011;11(13):2714-26
  • De Mateo S, Ramos L, de Boer P, et al. Protamine 2 precursors and processing. Protein Pept Lett 2011;18:778-85
  • Jodar M, Oriola J, Mestre G, et al. Polymorphisms, haplotypes and mutations in the protamine 1 and 2 genes. Int J Androl 2011;34(5pt1):470-85
  • Baker MA. The ‘omics revolution and our understanding of sperm cell biology. Asian J Androl 2011;13(1):6-10
  • Visconti PE, Westbrook VA, Chertihin O, et al. Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol 2002;53(1–2):133-50
  • De Mateo S, Martínez-Heredia J, Estanyol JM, et al. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics 2007;7(23):4264-77
  • Botta T, Blescia S, Martínez-Heredia J, et al. Identification of proteomic differences in oligozoospermic sperm samples. Rev Int Androl 2009;7:14-19
  • Castillo J, Amaral A, Azpiazu R, et al. Genomic and proteomic dissection and characterization of the human sperm chromatin. Mol Hum Reprod 2014;20(11):1041-53
  • Azpiazu R, Amaral A, Castillo J, et al. High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod 2014;29(6):1225-37
  • Wang G, Guo Y, Zhou T, et al. In-depth proteomic analysis of the human sperm reveals complex protein compositions. J Proteomics 2013;79:114-22
  • Amaral A, Paiva C, Attardo Parrinello C, et al. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res 2014;13(12):5670-84
  • Amaral A, Castillo J, Estanyol JM, et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2013;12(2):330-42
  • World Health Organization. Department of Reproductive Health and Research. WHO laboratory manual for the examination and processing of human semen. Fifth edition
  • Chu DS, Liu H, Nix P, et al. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 2006;443(7107):101-5
  • Ma X, Zhu Y, Li C, et al. Characterisation of Caenorhabditis elegans sperm transcriptome and proteome. BMC Genomics 2014;15:168
  • Dorus S, Busby SA, Gerike U, et al. Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nat Genet 2006;38(12):1440-5
  • Wasbrough ER, Dorus S, Hester S, et al. The Drosophila melanogaster sperm proteome-II (DmSP-II). J Proteomics 2010;73(11):2171-85
  • Baker MA, Hetherington L, Reeves GM, Aitken RJ. The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 2008;8(8):1720-30
  • Baker MA, Hetherington L, Reeves G, et al. The rat sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 2008;8(11):2312-21
  • Vilagran I, Castillo J, Bonet S, et al. Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) are good markers to predict boar sperm freezing capacity. Theriogenology 2013;80(5):443-50
  • Byrne K, Leahy T, McCulloch R, et al. Comprehensive mapping of the bull sperm surface proteome. Proteomics 2012;12(23-24):3559-79
  • Skerget S, Rosenow M, Polpitiya A, et al. The rhesus macaque (Macaca mulatta) sperm proteome. Mol Cell Proteomics 2013;12(11):3052-67
  • Zhou T, Wang G, Chen M, et al. Comparative analysis of macaque and human sperm proteomes: insights into sperm competition. Proteomics 2014. [Epub ahead of print]
  • Perrin A, Caer E, Oliver-Bonet M, et al. DNA fragmentation and meiotic segregation in sperm of carriers of a chromosomal structural abnormality. Fertil Steril 2009;92(2):583-9
  • Nakachi M, Nakajima A, Nomura M, et al. Proteomic profiling reveals compartment-specific, novel functions of ascidian sperm proteins. Mol Reprod Dev 2011;78(7):529-49
  • Martínez-Heredia J, Estanyol JM, Ballescà JL, Oliva R. Proteomic identification of human sperm proteins. Proteomics 2006;6(15):4356-69
  • Weber K, Pringle J, Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol 1972;26:3-27
  • Wellner D. Electrofocusing in gels. Anal Chem 1970;43(10):59A-65A
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975;250(10):4007-21
  • Pixton KL, Deeks ED, Flesch FM, et al. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum Reprod 2004;19(6):1438-47
  • Westermeier R, Postel W, Weser J, Görg A. High-resolution two-dimensional electrophoresis with isoelectric focusing in immobilized pH gradients. J Biochem Biophys Methods 1983;8(4):321-30
  • Unlü M, Morgan M, Minden J. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997;18(11):2071-7
  • Martínez-Heredia J, de Mateo S, Vidal-Taboada JM, et al. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod 2008;23(4):783-91
  • Opiteck G, Lewis K, Jorgenson J, Anderegg R. Comprehensive on-line LC/LC/MS of proteins. Anal Chem 1997;69(8):1518-24
  • Thompson A, Schäfer J, Kuhn K, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 2003;75(8):1895-904
  • Von Haller PD, Yi E, Donohoe S, et al. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: I. Statistically annotated datasets for peptide sequences and proteins identified via the application of ICAT and T. Mol Cell Proteomics 2003;2(7):426-7
  • Kellermann J. ICPL – Isotope-Coded Protein Label. Methods Mol Biol 2008;424:113-23
  • Ong S-E, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002;1(5):376-86
  • Yao X, Afonso C, Fenselau C. Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J Proteome Res 2003;2(2):147-52
  • Eng JK, McCormack AL, Yates JR3rd. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 1994;5(11):976-89
  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999;20(18):3551-67
  • Ma B, Zhang K, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 2003;17(20):2337-42
  • Reiter L, Claassen M, Schrimpf SP, et al. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol Cell Proteomics 2009;8(11):2405-17
  • Li L, Fan L, Zhu W, et al. Establishment of a high-resolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors. Asian J Androl 2007;9:321-9
  • Johnstos DS, Wooters JOE, Kopf GS, et al. Analysis of the Human Sperm Proteome. Ann N Y Acad Sci 2005;1061(1):190-202
  • Baker MA, Reeves G, Hetherington L, et al. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl 2007;1(5):524-32
  • Baker MA, Naumovski N, Hetherington L, et al. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 2013;13(1):61-74
  • Kim Y-H, Haidl G, Schaefer M, et al. Compartmentalization of a unique ADP/ATP carrier protein SFEC (Sperm Flagellar Energy Carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece. Dev Biol 2007;302(2):463-76
  • Naaby-Hansen S, Diekman A, Shetty J, et al. Identification of calcium-binding proteins associated with the human sperm plasma membrane. Reprod Biol Endocrinol 2010;8:6
  • Naaby-Hansen S, Herr JC. Heat shock proteins on the human sperm surface. J Reprod Immunol 2010;84(1):32-40
  • Nixon B, Mitchell LA, Anderson AL, et al. Proteomic and functional analysis of human sperm detergent resistant membranes. J Cell Physiol 2011;226(10):2651-65
  • Redgrove KA, Anderson AL, Dun MD, et al. Involvement of multimeric protein complexes in mediating the capacitation-dependent binding of human spermatozoa to homologous zonae pellucidae. Dev Biol 2011;356(2):460-74
  • Gu B, Zhang J, Wu Y, et al. Proteomic analyses reveal common promiscuous patterns of cell surface proteins on human embryonic stem cells and sperms. PLoS One 2011;6(5):e19386
  • Ficarro S, Chertihin O, Westbrook VA, et al. Phosphoproteome analysis of capacitated human sperm: evidence of tyrosine phosphorylation of kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 2003;278(13):11579-89
  • Lefièvre L, Chen Y, Conner SJ, et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics 2007;7(17):3066-84
  • Vigodner M, Shrivastava V, Gutstein LE, et al. Localization and identification of sumoylated proteins in human sperm: excessive sumoylation is a marker of defective spermatozoa. Hum Reprod 2013;28(1):210-23
  • Wang G, Wu Y, Zhou T, et al. Mapping of the N-Linked glycoproteome of human spermatozoa. J Proteome Res 2013;12(12):5750-9
  • Sun G, Jiang M, Zhou T, et al. Insights into the lysine acetylproteome of human sperm. J Proteomics 2014;109C:199-211
  • Aitken RJ, Smith TB, Jobling MS, et al. Oxidative stress and male reproductive health. Asian J Androl 2014;16(1):31-8
  • Hamada A, Sharma R, du Plessis SS, et al. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil Steril 2013;99(5):1216-1226.e2
  • Sharma R, Agarwal A, Mohanty G, et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol 2013;11(1):48
  • Behrouzi B, Kenigsberg S, Alladin N, et al. Evaluation of potential protein biomarkers in patients with high sperm DNA damage. Syst Biol Reprod Med 2013;59(3):153-63
  • Intasqui P, Camargo M, Del Giudice PT, et al. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J Assist Reprod Genet 2013;30(9):1187-202
  • Frapsauce C, Pionneau C, Bouley J, et al. Unexpected in vitro fertilization failure in patients with normal sperm: a proteomic analysis. Gynecol Obstet Fertil 2009;37(10):796-802
  • Frapsauce C, Pionneau C, Bouley J, et al. Proteomic identification of target proteins in normal but nonfertilizing sperm. Fertil Steril 2014;102(2):372-80
  • Xu W, Hu H, Wang Z, et al. Proteomic characteristics of spermatozoa in normozoospermic patients with infertility. J Proteomics 2012;75(17):5426-36
  • Zhu Y, Wu Y, Jin K, et al. Differential proteomic profiling in human spermatozoa that did or did not result in pregnancy via IVF and AID. Proteomics Clin Appl 2013;7:850-8
  • Secciani F, Bianchi L, Ermini L, et al. Protein profile of capacitated versus ejaculated human sperm. J Proteome Res 2009;8(7):3377-89
  • Wang S, Wang W, Xu Y, et al. Proteomic characteristics of human sperm cryopreservation. Proteomics 2014;14(2-3):298-310
  • McReynolds S, Dzieciatkowska M, Stevens J, et al. Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertil Steril 2014;102(3):692-9
  • Zhao C, Huo R, Wang F-Q, et al. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil Steril 2007;87(2):436-8
  • Siva AB, Kameshwari DB, Singh V, et al. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod 2010;16(7):452-62
  • Liu Y, Guo Y, Song N, et al. Proteomic pattern changes associated with obesity-induced asthenozoospermia. Andrology 2014; Epub ahead of print
  • Shen S, Wang J, Liang J, He D. Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol 2013;31(6):1395-401
  • Chan C-C, Shui H-A, Wu C-H, et al. Motility and protein phosphorylation in healthy and asthenozoospermic sperm. J Proteome Res 2009;8(11):5382-6
  • Parte PP, Rao P, Redij S, et al. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC–MSE) reveals altered proteomic signatures in asthenozoospermia. J Proteomics 2012;75(18):5861-71
  • Liao T-T, Xiang Z, Zhu W-B, Fan L-Q. Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl 2009;11(6):683-93
  • Thacker S, Yadav SP, Sharma RK, et al. Evaluation of sperm proteins in infertile men: a proteomic approach. Fertil Steril 2011;95(8):2745-8
  • Kriegel TM, Heidenreich F, Kettner K, et al. Identification of diabetes- and obesity-associated proteomic changes in human spermatozoa by difference gel electrophoresis. Reprod Biomed Online 2009;19(5):660-70
  • Paasch U, Heidenreich F, Pursche T, et al. Identification of increased amounts of eppin protein complex components in sperm cells of diabetic and obese individuals by difference gel electrophoresis. Mol Cell Proteomics 2011;10(8):M110.007187
  • Pilatz A, Lochnit G, Karnati S, et al. Acute epididymitis induces alterations in sperm protein composition. Fertil Steril 2014;101(6):1609-17; e1–5
  • Kichine E, Di Falco M, Hales BF, et al. Analysis of the sperm head protein profiles in fertile men: consistency across time in the levels of expression of heat shock proteins and peroxiredoxins. PLoS One 2013;8(10):e77471
  • Gallardo Bolaños JM, Balao da Silva CM, Martín Muñoz P, et al. Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction 2014;148(2):221-35
  • Lagarrigue M, Lavigne R, Guével B, et al. Matrix-assisted laser desorption/ionization imaging mass spectrometry: a promising technique for reproductive research. Biol Reprod 2012;86(3):74
  • Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008;4:222
  • Peterson AC, Russell JD, Bailey DJ, et al. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 2012;11(11):1475-88
  • Collins AM, Caperna TJ, Williams V, et al. Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect Mol Biol 2006;15(5):541-9
  • Zareie R, Eubel H, Millar AH, Baer B. Long-term survival of high quality sperm: insights into the sperm proteome of the honeybee Apis mellifera. J Proteome Res 2013;12(11):5180-8
  • Hozumi A, Satouh Y, Ishibe D, et al. Local database and the search program for proteomic analysis of sperm proteins in the ascidian Ciona intestinalis. Biochem Biophys Res Commun 2004;319(4):1241-6
  • Satouh Y, Inaba K. Proteomic characterization of sperm radial spokes identifies a novel spoke protein with an ubiquitin domain. FEBS Lett 2009;583(13):2201-7
  • Simmons LW, Tan Y-F, Millar AH. Sperm and seminal fluid proteomes of the field cricket Teleogryllus oceanicus: identification of novel proteins transferred to females at mating. Insect Mol Biol 2013;22(1):115-30
  • Cao W, Gerton GL, Moss SB. Proteomic profiling of accessory structures from the mouse sperm flagellum. Mol Cell Proteomics 2006;5(5):801-10
  • Stein KK, Go JC, Lane WS, et al. Proteomic analysis of sperm regions that mediate sperm-egg interactions. Proteomics 2006;6(12):3533-43
  • Platt MD, Salicioni AM, Hunt DF, Visconti PE. Use of differential isotopic labeling and mass spectrometry to analyze capacitation-associated changes in the phosphorylation status of mouse sperm proteins. J Proteome Res 2009;8(3):1431-40
  • Baker MA, Reeves G, Hetherington L, Aitken RJ. Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis. Proteomics 2010;10(3):482-95
  • Dorus S, Wasbrough ER, Busby J, et al. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol Biol Evol 2010;27(6):1235-46
  • Asano A, Nelson JL, Zhang S, Travis AJ. Characterization of the proteomes associating with three distinct membrane raft sub-types in murine sperm. Proteomics 2010;10(19):3494-505
  • Guyonnet B, Zabet-Moghaddam M, SanFrancisco S, Cornwall GA. Isolation and proteomic characterization of the mouse sperm acrosomal matrix. Mol Cell Proteomics 2012;11(9):758-74
  • Chauvin T, Xie F, Liu T, et al. A systematic analysis of a deep mouse epididymal sperm proteome. Biol Reprod 2012;87(6):141
  • Li HY, Zhang H. Proteome analysis for profiling infertility markers in male mouse sperm after carbon ion radiation. Toxicology 2013;306:85-92
  • Yuan S, Zheng H, Zheng Z, Yan W. Proteomic analyses reveal a role of cytoplasmic droplets as an energy source during epididymal sperm maturation. PLoS One 2013;8(10):e77466
  • Baker MA, Smith ND, Hetherington L, et al. Label-free quantitation of phosphopeptide changes during rat sperm capacitation. J Proteome Res 2009;9(2):718-29
  • Suryawanshi AR, Khan SA, Gajbhiye RK, et al. Differential proteomics leads to identification of domain-specific epididymal sperm proteins. J Androl 2011;32(3):240-59
  • Van Gestel RA, Brewis IA, Ashton PR, et al. Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol Hum Reprod 2005;11(8):583-90
  • Choi Y-J, Uhm S-J, Song S-J, et al. Cytochrome c upregulation during capacitation and spontaneous acrosome reaction determines the fate of pig sperm cells: linking proteome analysis. J Reprod Dev 2008;54(1):68-83
  • Belleannee C, Belghazi M, Labas V, et al. Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics 2011;11(10):1952-64
  • Tsai P-SJ, Brewis IA, van Maaren J, Gadella BM. Involvement of complexin 2 in docking, locking and unlocking of different SNARE complexes during sperm capacitation and induced acrosomal exocytosis. PLoS One 2012;7(3):e32603
  • Zigo M, Jonáková V, Šulc M, Maňásková-Postlerová P. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates. Int J Biol Macromol 2013;61:322-8
  • Kongmanas K, Kruevaisayawan H, Saewu A, et al. Proteomic characterization of pig sperm anterior head plasma membrane reveals roles of acrosomal proteins in ZP3 binding. J Cell Physiol 2015;230(2):449-63
  • Peddinti D, Nanduri B, Kaya A, et al. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol 2008;2:19
  • Gaviraghi A, Deriu F, Soggiu A, et al. Proteomics to investigate fertility in bulls. Vet Res Commun 2010;34(1):33-6
  • Park Y-J, Kwon W-S, Oh S-A, Pang M-G. Fertility-related proteomic profiling bull spermatozoa separated by percoll. J Proteome Res 2012;11(8):4162-8
  • Soggiu A, Piras C, Hussein HA, et al. Unravelling the bull fertility proteome. Mol Biosyst 2013;9(6):1188-95
  • Firat-Karalar EN, Sante J, Elliott S, Stearns T. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J Cell Sci 2014;127(19):4128-33
  • Redgrove KA, Nixon B, Baker MA, et al. The molecular chaperone HSPA2 plays a key role in regulating the expression of sperm surface receptors that mediate sperm-egg recognition. PLoS One 2012;7(11):e50851

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.