2,400
Views
62
CrossRef citations to date
0
Altmetric
Review

Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics

, , &
Pages 399-408 | Published online: 09 Jan 2014

References

  • Sing A, Thornton ER, Westheimer FH. The photolysis of diazoacetylchymotrypsin. J. Biol. Chem.237(9), PC3006–PC3008 (1962).
  • Fleming SA. Chemical reagents in photoaffinity labeling. Tetrahedron51(46), 12479–12520 (1995).
  • Brunner J. New photolabeling and crosslinking methods. Ann. Rev. Biochem.62, 483–514 (1993).
  • Dormán G, Prestwich GD. Using photolabile ligands in drug discovery and development. Trends Biotechnol.18, 64–77 (2000).
  • Weber PJ, Beck-Sickinger AG. Comparison of the photochemical behavior of four different photo-activatable probes. J. Peptide Res.49(5), 375–383 (1997).
  • Dormán G, Prestwich GD. Benzophenone photophores in biochemistry. Biochem.33(19), 5661–5673 (1994).
  • Luger K, Mader AW, Richmond RK et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389, 251–260 (1997).
  • van Aalten DM, DiRusso CC, Knudsen J. The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. EMBO J.20, 2041–2050 (2001).
  • Steen H, Jensen ON. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry. Mass Spect. Rev.21, 163–182 (2002).
  • Sastry S, Ross BM. RNA-binding site in T7 RNA polymerase. Proc. Natl Acad. Sci. USA95, 9111–9116 (1998).
  • Meisenheimer K, Koch T. Photocross-linking of nucleic acids to associated proteins. Crit. Rev. Biochem. Mol. Biol.32, 101–140 (1997).
  • Golden MC, Resing KA, Collins BD et al. Mass spectral characterization of a protein-nucleic acid photocrosslink. Protein Sci.8, 2806–2812 (1999).
  • Steen H, Petersen J, Mann M et al. Mass spectrometric analysis of a UV-cross-linked protein–DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA. Protein Sci.10, 1989–2001 (2001).
  • Geyer H, Geyer R, Pingoud V. A novel strategy for the identification of protein–DNA contacts by photocrosslinking and mass spectrometry. Nucleic Acids Res.32(16), e132 (2004).
  • Cusick ME, Klitgord N, Vidal M et al. Interactome: gateway into systems biology. Human Mol. Gen.14(2), R171–R181 (2005).
  • Hatanaka Y, Sadakane Y. Photoaffinity labeling in drug discovery and developments: chemical gateway for entering proteomic frontier. Curr. Topics Med. Chem.2, 271–288 (2002).
  • Price D, Park I, Avraham H. Methods for the study of protein–protein interactions in cancer cell biology. Methods Mol. Biol.218, 255–267 (2003).
  • Jahn O, Eckart K, Tezval H et al. Characterization of peptide-protein interactions using photoaffinity labeling and LC/MS. Anal. BioAnal. Chem.378, 1031–1036 (2004).
  • Mills JS, Miettinen HM, Barnidge D et al. Identification of a ligand binding site in the human neutrophil formyl peptide receptor using a site-specific fluorescent photoaffinity label and mass spectrometry. J. Biol. Chem.273(17), 10428–10435 (1998).
  • Girault S, Sagan S, Bolbach G et al. The use of photolabelled peptides to localize the substance-P-binding site in the human neurokinin-1 tachykinin receptor. Eur. J. Biochem.240, 215–222 (1996).
  • Ploug M. Identification of specific sites involved in ligand binding by photoaffinity labeling of the receptor for the urokinase-type plasminogen activator. Residues located at equivalent positions in uPAR domains I and III participate in the assembly of a composite ligand-binding site. Biochemistry37, 16494–16505 (1998).
  • Perrin MH, Fischer WH, Kunitake KS et al. Expression, purification, and characterization of a soluble form of the first extracellular domain of the human type 1 corticotropin realeasing factor receptor.J. Biol. Chem.276(34), 31528–31534 (2001).
  • Jahn O, Eckart K, Brauns O et al. The binding protein of corticotrophin-releasing factor: ligand-binding site and subunit structure. Proc. Natl Acad. Sci. USA99(19), 12055–12060 (2002).
  • Jahn O, Tezval H, Spiess J et al. Tandem mass spectrometric characterization of branched peptides derived from photoaffinity labeling. Int. J. Mass Spec.228, 527–540 (2003).
  • Sachon E, Bolbach G, Lavielle S et al. Met174 side chain is the site of photoinsertion of a substance P competitive peptide antagonist photoreactive in position 8. FEBS Lett.544, 45–49 (2003).
  • Sachon E, Tasseau O, Lavielle S et al. Isotope and affinity tags in photoreactive substance P analogues to identify the covalent linkage within the NK-1 receptor by MALDI-TOF analysis. Anal. Chem.75, 6536–6543 (2003).
  • Goshe MB, Smith RD. Stable isotope-coded proteomic mass spectrometry. Curr. Opin. Biotech.14, 101–109 (2003).
  • Jahn O, Hofmann B, Brauns O et al. The use of multiple ion chromatograms in on-line HPLC-MS for the characterization of post-translational and chemical modifications of proteins. Int. J. Mass Spec.214, 37–51 (2002).
  • Olcott MC, Andersson J, Sjöberg B-M. Localization and characterization of two nucleotide-binding sites on the anaerobic ribonucleotide reductase from bacteriophage T4. J. Biol. Chem.273(38), 24853–24860 (1998).
  • Kramer W, Sauber K, Baringhaus K-H et al. Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure. J. Biol. Chem.276(10), 7291–7301 (2001).
  • Raja MM, Kipp H, Kinne RKH. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides. Biochem.43, 10944–10951 (2004).
  • Last-Barney K, Davidson W, Cardozo M et al. Binding site elucidation of hydantoin-based antagonists of LFA-1 using multidisciplinary technologies: evidence for the allosteric inhibition of a protein–protein interaction. J. Am. Chem. Soc.123, 5643–5650 (2001).
  • LeRiche T, Skorey K, Roy P et al. Using mass spectrometry to study the photo-affinity labeling of protein tyrosine phosphatase 1B. Int. J. Mass Spec.238, 99–106 (2004).
  • Wu Z, Hasan A, Liu T, Teller D, Crabb J. Identification of CRALBP ligand interactions by photoaffinity labeling, hydrogen/deuterium exchange, and structural modeling. J. Biol. Chem.279 (26), 27357–27364 (2004).
  • Wen B, Doneanu CE, Gartner CA, Roberts AG, Atkins WM, Nelson SD. Fluorescent photoaffinity labeling of cytochrome P450 3A4 by lapechenole: identification of modification sites by mass spectrometry. Biochem.44, 1833–1845 (2005).
  • Borchers C, Boer R, Klemm K et al. Characterization of the dexniguldipine binding site in the multidrug resistance-related transport protein P-glycoprotein by photoaffinity labeling and mass spectrometry. Mol. Pharm.61(6), 1366–1376 (2002).
  • Ecker GF, Csaszar E, Kopp S et al. Identification of ligand-binding regions of P-glycoprotein by activated-pharmacophore photoaffinity labeling and matrix-assisted laser desorption/ionization mass spectrometry. Mol. Pharm.61(3), 637–648 (2002).
  • Pleban K, Kopp S, Csaszar E et al. P-glycoprotein substrate binding domains are located at the transmembrane domain interfaces: a combined photoaffinity labeling-protein homology modeling approach. Mol. Pharm.67(2), 365–374 (2005).
  • Webb Y, Zhou X, Ngo L et al. Photoaffinity labeling and mass spectrometry identify ribosomal protein S3 as a potential target for hybrid polar cytodifferentiation agents. J. Biol. Chem.274(20), 14280–14287 (1999).
  • Shen D-W, Liang X-J, Gawinowicz M, Gottesman MM. Identification of cytoskeletal [14C]Carboplatin-binding proteins reveals reduced expression and disorganization of actin and filamin in cisplatin-resistant cell lines. Mol. Pharm.66(4), 789–793 (2004).
  • Davidson W, McGibbon G, White P et al. Characterization of the binding site for inhibitors of the HPV11 E1-E2 protein interaction on the E2 transactivation domain by photoaffinity labeling and mass spectrometry. Anal. Chem.76(7), 2095–2102 (2004).
  • Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spec. Rev.24, 168–200 (2005).
  • Martin SE, Shabanowitz J, Hunt DF, Marto JA. Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI Fouier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem.72, 4266–4274 (2000).
  • Lafitte D, Benezech V, Bompart J et al. Characterization of low affinity complexes between calmodulin and pyrazine derivatives by electrospray ionization mass spectrometry. J. Mass Spec.32, 87–93 (1997).
  • Al-Mawsawi LQ, Fikkert, V, Dayam R et al. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Proc. Natl Acad. Sci. USA103(26), 10080–10085 (2006).
  • Ecker GF, Pleban K, Kopp S et al. A three-dimensional model for the substrate binding domain of the multidrug ATP binding cassette transporter LmrA. Mol. Pharm.66(5), 1169–1179 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.