207
Views
35
CrossRef citations to date
0
Altmetric
Review

Embryonic stem cell proteomics

, , &
Pages 427-437 | Published online: 09 Jan 2014

References

  • Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev.19, 1129–1155 (2005).
  • Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature309, 255–256 (1984).
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981).
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998).
  • Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol.18, 399–404 (2000).
  • Cowan CA, Klimanskaya I, McMahon J et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Eng. J. Med.350, 1353–1356 (2004).
  • Daheron L, Opitz SL, Zaehres H et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells22, 770–778 (2004).
  • Williams RL, Hilton DJ, Pease S et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature336,684–687 (1988).
  • Smith AG, Heath JK, Donaldson DD, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature336, 688–690 (1988).
  • Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev. Biol.275, 269–286 (2004).
  • Boiani M, Scholer HR. Regulatory networks in embryo-derived pluripotent stem cells. Mol. Cell Biol.6, 872–884 (2005).
  • Smith A. Embryonic stem cells. In: Stem Cell Biology. Marshak DR, Gardner RL, Gottlieb D (Eds). Cold Spring Harbor Laboratory Press, NY, USA, 205–230 (2001).
  • Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Development131, 5515–5525 (2004).
  • Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev.85, 635–678 (2005).
  • Sekkai D, Gruel G, Herry M et al. Microarray analysis of LIF/Stat3 transcriptional targets in embryonic stem cells. Stem Cells23, 1634–1642 (2005).
  • Andrews PW, Benvenisty N, McKay R et al. The International Stem Cell Initiative: toward benchmarks for human embryonic stem cell research. Nat. Biotechnol.23, 795–797 (2005).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).
  • Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat. Genet.33, 311–323 (2003).
  • Unwin RD, Gaskell SJ, Evans CA, Whetton AD. The potential for proteomic definition of stem cell populations. Exp. Hematol.31, 1147–1159 (2003).
  • Beausoleil SA, Jedrychowski M, Schwartz D et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl Acad. Sci.USA101, 12130–12135 (2004).
  • De Hoog CL, Mann M. Proteomics. Annu. Rev. Genomics Hum. Genet.5, 267–293 (2004).
  • Kelly DL, Rizzino A. DNA microarray analyses of genes regulated during the differentiation of embryonic stem cells. Mol. Reprod. Dev.56, 113–123 (2000).
  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002)
  • Ivanova NB, Dimos JT, Schaniel C et al. A stem cell molecular signature. Science298, 601–604 (2002).
  • Sato N, Sanjuan IM, Heke M et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol.260, 404–413 (2003).
  • Ginis I, Luo Y, Miura T et al. Differences between human and mouse embryonic stem cells. Dev. Biol.269, 360–380 (2004).
  • Palmqvist L, Glover CH, Hsu L et al. Correlation of murine embryonic stem cell gene expression profiles with functional measures of pluripotency. Stem Cells23, 663–680 (2005).
  • Anisimov SV, Tarasov KV, Tweedie D et al. SAGE identification of gene transcripts with profiles unique to pluripotent mouse R1 embryonic stem cells. Genomics79, 169–176 (2002).
  • Wei CL, Miura T, Robson P et al. Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells23, 166–185 (2005).
  • Guo X, Ying W, Wan J et al. Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro. Electrophoresis22, 3067–3075 (2001).
  • Elliott ST, Crider DG, Garnham CP, Boheler KR, Van Eyk JE. Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics4, 3813–3832 (2004).
  • Nagano K, Taoka M, Yamauchi Y, et al. Large-scale identification of proteins expressed in mouse embryonic stem cells. Proteomics5, 1346–1361 (2005).
  • Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet.24, 372–376 (2000).
  • Okuda A, Fukushima A, Nishimoto M et al. UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J.17, 2019–2032 (1998).
  • Nunomura K, Nagano K, Itagaki C et al. Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol. Cell. Proteomics4, 1968–1976 (2005).
  • Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics14, 378–379 (1998).
  • Van Hoof D, Passier R, Ward-Van Oostwaard D et al. A quest for human and mouse embryonic stem cell-specific proteins. Mol. Cell. Proteomics (2006) Published ahead of print April 6, 2006; DOI 10.1074/mcp.M500405-MCP200.
  • Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell115, 281–292 (2003).
  • Kurisaki A, Hamazaki TS, Okabayashi K et al. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor. Biochem. Biophys. Res. Comm.335, 667–675 (2005).
  • Lilley KS, Friedman DB. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev. Proteomics1, 401–409 (2004).
  • Wang D, Gao L. Proteomic analysis of neural differentiation of mouse embryonic stem cells. Proteomics5, 4414–4426 (2005).
  • Hu Y, Zhang Z, Torsney E et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J. Clin. Invest.113, 1258–1265 (2004).
  • Yin X, Mayr M, Xiao Q et al. Proteomic dataset of Sca-1+ progenitor cells. Proteomics5, 4533–4545 (2005).
  • Prudhomme W, Daley GQ, Zandstra P, Lauffenburger DA. Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proc. Natl Acad. Sci.USA101, 2900–2905 (2004).
  • Puente LG, Borris DJ, Carriere JF, Kelly JF, Megeney LA. Identification of candidate regulators of embryonic stem cell differentiation by comparative phosphoprotein-affinity profiling. Mol. Cell. Proteomics5, 57–67 (2006).
  • Perez-Iratxeta C, Palidwor G, Porter CJ et al. Study of stem cell function using microarray experiments. FEBS Lett.579, 1795–1801 (2005).
  • Richards M, Tan SP, Tan JH, Chan WK, Bongso A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells22, 51–64 (2004).
  • Abeyta MJ, Clark AT, Rodriguez RT et al. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet.13, 601–608 (2004).
  • Brandenberger R, Wei H, Zhang S et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat. Biotechnol.22, 707–716 (2004).
  • Bhattacharya B, Miura T, Brandenberger R et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood103, 2956–2964 (2004).
  • Zenzmaier C, Kollroser M, Gesslbauer B et al. Preliminary 2D chromatographic investigation of the human stem cell proteome. Biochem. Biophys. Res. Comm.310, 483–490 (2003).
  • Tao W, Wang M, Voss ED et al. Comparative proteomic analysis of human CD34+ stem/progenitor cells and mature CD15+ myeloid cells. Stem Cells22, 1003–1014 (2004).
  • Wang D, Park JS, Chu JS et al. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J. Biol. Chem.279, 43725–43734 (2004).
  • Salasznyk RM, Westcott AM, Klees RF et al. Comparing the protein expression profiles of human mesenchymal stem cells and human osteoblasts using gene ontologies. Stem Cells14, 354–366 (2005).
  • Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells23, 1367–1377 (2005).
  • Maurer MH, Feldmann RE Jr, Bromme JO, Kalenka A. Comparison of statistical approaches for the analysis of proteome expression data of differentiating neural stem cells. J. Proteome Res.496 (2005).
  • Zenzmaier C, Gesslbauer B, Grobuschek N, Jandrositz A, Preisegger KH, Kungl AJ. Proteomic profiling of human stem cells derived from umbilical cord blood. Biochem. Biophys. Res. Comm.328, 968–972 (2005).
  • Feldmann RE Jr, Bieback K, Maurer MH, et al. Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis26, 2749–2758 (2005).
  • DeLany JP, Floyd ZE, Zvonic S et al. Proteomic analysis of primary cultures of human adipose-derived stem cells: modulation by adipogenesis. Mol. Cell. Proteomics4, 731–740 (2005).
  • Hayman MW, Przyborski SA. Proteomic identification of biomarkers expressed by human pluripotent stem cells. Biochem. Biophys. Res. Comm.316, 918–923 (2004).
  • Unwin RD, Smith DL, Blinco D et al. Quantitative proteomics reveals post-translational control as a regulatory factor in primary hematopoietic stem cells. Blood (2006) in press.
  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol.87, 27–45 (1985).
  • Mummery CL, Slager H, Kruijer W et al. Expression of transforming growth factor beta 2 during the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol.137, 161–170 (1990).
  • Van de Stolpe A, Van den Brink S, Van Rooijen M et al. Human embryonic stem cells: towards therapies for cardiac disease. Derivation of a Dutch human embryonic stem cell line. Reprod Biomed Online11, 476–485 (2005).
  • Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat. Biotechnol.23, 699–708 (2005).
  • Lim JW, Bodnar A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics2, 1187–1203 (2002).
  • Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol.20, 933–936 (2002).
  • Prowse AB, McQuade LR, Bryant KJ, Van Dyk DD, Tuch BE, Gray PP. A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics5, 978–989 (2005).
  • Heck AJ, Krijgsveld J. Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics1, 317–326 (2004).
  • Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.76, 3935–3943 (2004).
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1, 252–262 (2005).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17, 994–999 (1999).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3, 1154–1169 (2004).
  • Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol.22, 1139–1145 (2004).
  • Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Medicine11, 228–232 (2005).
  • Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J. Proteome Res.5, 651–658 (2006).
  • Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol.8, 33–41 (2004).
  • Gruhler A, Olsen JV, Mohammed S et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics4, 310–327 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.