267
Views
14
CrossRef citations to date
0
Altmetric
Review

C. elegans : an invaluable model organism for the proteomics studies of the cholesterol-mediated signaling pathway

, , , &
Pages 439-453 | Published online: 09 Jan 2014

References

  • Riddle D, Albert P. C. elegans II. Riddle D, Blumenthal T, Meyer B, Priess J (Eds). Cold Spring Harbor Laboratory Press, NY, USA, 739–768 (1997).
  • Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res.10(5), 703–713 (2000).
  • van Helden J. Prediction of transcriptional regulation by analysis of the non-coding genome. Curr. Genomics4, 217–224 (2003).
  • The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science282(5396), 2012–2018 (1998).
  • Brett D, Pospisil H, Valcarcel J, Reich J, Bork P. Alternative splicing and genome complexity. Nat. Genet.30, 29–30 (2002).
  • Reboul J, Vaglio P, Rual JF et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat. Genet.34(1), 35–41 (2003).
  • Huang RY, Boulton SJ, Vidal M et al. High-throughput expression, purification, and characterization of recombinant Caenorhabditis elegans proteins. Biochem. Biophys. Res. Commun.307(4), 928–934 (2003).
  • Luan CH, Qiu S, Finley JB et al. High-throughput expression of C. elegans proteins. Genome Res.14(10B), 2102–2110 (2004).
  • Lamesch P, Milstein S, Hao T et al. C. elegans ORFeome version 3.1: increasing the coverage of ORFeome resources with improved gene predictions. Genome Res.14(10B), 2064–2069 (2004).
  • Chen N, Lawson D, Bradnam K et al. WormBase as an integrated platform for the C. elegans ORFeome. Genome Res.14(10B), 2155–2161 (2004).
  • Vanfleteren JR, De Vreese A. Analysis of the proteins of aging Caenorhabditis elegans by high resolution two-dimensional gel electrophoresis. Electrophoresis15(2), 289–296 (1994).
  • Bini L, Heid H, Liberatori S et al. Two-dimensional gel electrophoresis of Caenorhabditis elegans homogenates and identification of protein spots by microsequencing. Electrophoresis18, 557–562 (1997).
  • Kaji H, Tsuji T, Mawuenyega KG et al. Profiling of Caenorhabditis elegans proteins using two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis21(9), 1755–1765 (2000).
  • Schrimpf SP, Langen H, Gomes AV et al. A two-dimensional protein map of Caenorhabditis elegans. Electrophoresis22(6), 1224–1232 (2001).
  • Madi A, Mikkat S, Ringel B et al. Mass spectrometric proteome analysis for profiling temperature-dependent changes of protein expression in wild-type Caenorhabditis elegans. Proteomics3(8), 1526–1534 (2003).
  • Bantscheff M, Ringel B, Madi A et al. Proteomics4(8), 2283–2295 (2004).
  • Mawuenyega KG, Kaji H, Yamuchi Y et al. Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography-tandem mass spectrometry. J. Proteome Res.2(1), 23–35 (2003).
  • Krijgsveld J, Ketting RF, Mahmoudi T et al. Metabolic labeling of C. elegans and D. melanogaster for quantitative Proteomics Nat. Biotechnol.21(8), 927–931 (2003)
  • Tabuse Y, Nabetani T, Tsugita A. Proteomic analysis of protein expression profiles during Caenorhabditis elegans development using two-dimensional difference gel electrophoresis Proteomics5(11), 2876–2891 (2005).
  • Masuda M, Saimaru H, Takamura N et al. An improved method for proteomics studies in C. elegans by fluorogenic derivatization, HPLC isolation, enzymatic digestion and liquid chromatography – tandem mass spectrometric identification. Biomed. Chromatogr.19(7), 556–560 (2005).
  • Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat. Biotechnol.21(3), 255–261 (2003).
  • Kalume DE, Molina H, Pandey A. Tackling the phosphoproteome: tools and strategies. Curr. Opin. Chem. Biol.7(1), 64–69 (2003).
  • Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol.8(1), 33–41 (2004).
  • Wang X, Inoue S, Gu J et al. Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc. Natl Acad. Sci. USA102(44), 15791–15796 (2005).
  • Hirabayashi J, Arata Y, Kasai K. Glycome project: concept, strategy and preliminary application to Caenorhabditis elegans. Proteomics1(2), 295–303 (2001).
  • Fan X, She YM, Bagshaw RD, et al. Identification of the hydrophobic glycoproteins of Caenorhabditis elegans. Glycobiology15(10), 952–964 (2005).
  • Schachter H. Protein glycosylation lessons from Caenorhabditis elegans. Curr. Opin. Struct. Biol.14(5), 607–616 (2004).
  • Fan X, She YM, Bagshaw RD et al. A method for proteomic identification of membrane-bound proteins containing Asn-linked oligosaccharides. Anal. Biochem.332(1), 178–186 (2004).
  • Kaji H, Isobe T. Protein database of Caenorhabditis elegans. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci.787(1), 91–99 (2003).
  • Taniguchi N, Nakamura K, Narimatsu H et al. Human Disease Glycomics/Proteome Initiative Workshop and the 4th HUPO Annual Congress. Proteomics6(1), 12–13 (2006).
  • Gygi SP, Rist B, Aebersold R. Measuring gene expression by quantitative proteome analysis. Curr. Opin. Biotechnol.11(4), 396–401 (2000).
  • Cutler P. Protein arrays: the current state-of-the-art. Proteomics3(1), 3–18 (2003).
  • Li S, Armstrong CM, Bertin N, et al. A map of the interactome network of the metazoan C. elegans. Science303(5657), 540–543 (2004).
  • Walhout AJ, Reboul J, Shtanko O et al. Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr. Biol.12(22), 1952–1958 (2002).
  • Walhout AJ, Boulton SJ, Vidal M. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast17(2), 88–94 (2000).
  • Fields S. High-throughput two-hybrid analysis. The promise and the peril. FEBS J.272(21), 5391–5393 (2005).
  • Duchaine TF, Wohlschlegel JA, Kennedy S et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell124(2), 343–354 (2006).
  • Skop AR, Liu H, Yates J III et al. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science305(5680), 61–66 (2004).
  • Gilleard JS, Woods DJ, Dow JA. Model-organism genomics in veterinary parasite drug-discovery. Trends Parasitol.21(7), 302–305 (2005).
  • Olsen A, Vantipalli MC, Lithgow GJ. Using Caenorhabditis elegansas a model for aging and age-related diseases. Ann. NY Acad. Sci.1067, 120–128 (2006).
  • Kwok TC, Ricker N, Fraser R et al. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature441(7089), 91–95 (2006).
  • Lochnit G, Bongaarts R, Geyer R. Searching new targets for anthelminthic strategies: interference with glycosphingolipid biosynthesis and phosphorylcholine metabolism affects development of Caenorhabditis elegans.Int. J. Parasitol.35(8), 911–923 (2005).
  • Gaud A, Simon JM, Witzel T et al. Prednisone reduces muscle degeneration in dystrophin-deficient Caenorhabditis elegans. Neuromuscul. Disord.14(6), 365–370 (2004).
  • Jain KK. RNAi and siRNA in target validation. Drug. Discov. Today9(7), 307–309 (2004).
  • Williams PL, Dusenbery DB. Screening test for neurotoxins using Caenorhabditis elegans. Prog. Clin. Biol. Res.253, 163–170 (1987).
  • Kimura KD, Tissenbaum HA, Liu Y et al. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science277(5328), 942–946 (1997).
  • Patterson GI, Padgett RW. TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet.16(1), 27–33 (2000).
  • Jia K, Albert PS, Riddle DL. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development129(1), 221–231 (2002).
  • Gerisch B, Antebi A. Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development131(8), 1765–1776 (2004).
  • Kurzchalia TV, Ward S. Why do worms need cholesterol? Nat. Cell Biol.5(8), 684–688 (2003).
  • Bae S, Seong J, Paik YK. Cholesterol biosynthesis from lanosterol: molecular cloning, chromosomal localization, functional expression and liver-specific gene regulation of rat sterol delta8-isomerase, a cholesterogenic enzyme with multiple functions. Biochem. J.353, 689–699 (2001).
  • Braverman N, Lin P, Moebius FF et al. Mutations in the gene encoding 3 beta-hydroxysteroid-delta 8, delta 7-isomerase cause X-linked dominant Conradi-Hunermann syndrome. Nat. Genet.22, 291–294 (1999).
  • Chitwood DJ. Biochemistry and function of nematode steroids. Crit. Rev. Biochem. Mol. Biol.34, 273–284 (1999).
  • Lee EY, Shim YH, Chitwood DJ et al. Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun.328(4), 929–936 (2005).
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature387(6633), 569–572 (1997).
  • Yochem J, Tuck S, Greenwald I, Han M. A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development126(3), 597–606 (1999).
  • Scheel J, Srinivasan J, Honnert U et al. Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans.Nat. Cell Biol.1(2), 127–129 (1999).
  • Church DL, Guan KL, Lambie EJ. Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development121, 2525–2535 (1995).
  • Matyash M, Matyash V, Nolte C et al. Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB J.16(1), 84–86 (2002).
  • Schedin P, Jonas P, Wood WB Function of the her-1 gene is required for maintenance of male differentiation in adult tissues of C. elegans. Dev. Genet.15(3), 231–239 (1994).
  • Thiele C, Hannah MJ, Fahrenholz F et al. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol.2(1), 42–49 (2000).
  • Motola DL, Cummins CL, Rottiers V et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell124(6), 1209–1223 (2006).
  • Michaux G, Gansmuller A, Hindelang C et al. CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells. Curr. Biol.10(18), 1098–1107 (2000).
  • Choi BK, Chitwood DJ, Paik YK. Proteomic changes during disturbance of cholesterol metabolism by azacoprostane treatment in Caenorhabditis elegans. Mol. Cell. Proteomics2(10), 1086–1095 (2003).
  • Chitwood DJ, Lusby WR, Lozano R, Thompson MJ, Svoboda JA. Novel nuclear methylation of sterols by the nematode Caenorhabditis elegans. Steroids42, 311–319 (1983).
  • Jeong PY, Jung M, Yim YH et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature433(7025), 541–545 (2005).
  • Shim YH, Chun JH, Lee EY et al. Role of cholesterol in germ-line development of Caenorhabditis elegans. Mol. Reprod. Dev.61(3), 358–366 (2002).
  • Sternberg PW, Schmid SL. Caveolin, cholesterol and Ras signaling. Nat. Cell Biol.1(2), E35–E37 (1999).
  • Kuwabara PE, Lee MH, Schedl T et al. C. elegans patched gene, ptc-1, functions in germ-line cytokinesis. Genes Dev.14(15), 1933–1944 (2000).
  • Shibata Y, Branicky R, Landaverde IO et al. Redox regulation of germline and vulval development in Caenorhabditis elegans. Science302(5651), 1779–1782 (2003).
  • Reinke V, Smith HE, Nance J et al. A global profile of germline gene expression in C. elegans. Mol. Cell.6(3), 605–616 (2000).
  • Steiner S, Gatlin CL, Lennon JJ et al. Proteomics to display lovastatin-induced protein and pathway regulation in rat liver. Electrophoresis21(11), 2129–2137 (2000).
  • Steiner S, Gatlin CL, Lennon JJ, et al. Cholesterol biosynthesis regulation and protein changes in rat liver following treatment with fluvastatin. Toxicol. Lett.120(1–3), 369–377 (2001).
  • Park JY, Seong JK, Paik YK. Proteomic analysis of diet-induced hypercholesterolemic mice. Proteomics4(2), 514–523 (2004).
  • Fenyo D. Identifying the proteome: software tools. Curr. Opin. Biotechnol.11(4), 391–395 (2000).
  • Costanzo MC, Hogan JD, Cusick ME et al. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res.28(1), 73–76 (2000).
  • Costanzo MC, Crawford ME, Hirschman JE et al. PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res.29(1), 75–79 (2001).
  • Kersey P, Bower L, Morris L et al. Integr8 and Genome Reviews: integrated views of complete genomes and proteomes. Nucleic Acids Res.33(Database issue), D297–D302 (2005).
  • Wu CH, Apweiler R, Bairoch A et al. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res.34(Database issue), D187–D191 (2006).
  • Mulder NJ, Apweiler R, Attwood TK et al. InterPro, progress and status in 2005. Nucleic Acids Res.33(Database issue), D201–D205 (2005).
  • Kriventseva EV, Servant F, Apweiler R. Improvements to CluSTr: the database of SWISS-PROT+TrEMBL protein clusters. Nucleic Acids Res.31(1), 388–389 (2003).
  • Camon E, Magrane M, Barrell D et al. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res.32(Database issue), D262–D266 (2004).
  • Valencia A. Automatic annotation of protein function. Curr. Opin. Struct. Biol.15(3), 267–274 (2005).
  • Kent WJ. BLAT – the BLAST-like alignment tool. Genome Res.12(4), 656–664 (2002).
  • Hoersch S, Leroy C, Brown NP et al. The GeneQuiz web server: protein functional analysis through the Web. Trends Biochem. Sci.25(1), 33–35 (2000).
  • Huang Y, Li Y. Prediction of protein subcellular locations using fuzzy k-NN method. Bioinformatics20(1), 21–28 (2004).
  • von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res.14(11), 4683–4690 (1986).
  • Tsur D, Tanner S, Bafna ZE et al. Identification of post-translational modifications by blind search of mass spectra. Nat. Biotechnol.23(12), 1562–1567 (2005).
  • Han Y, Ma B, Zhang K. SPIDER: software for protein identification from sequence tags with de novo sequencing error. J. Bioinform. Comput. Biol.3(3), 697–716 (2005).
  • Searle BC, Dasari S, Turner M et al. High-throughput identification of proteins and unanticipated sequence modifications using a mass-based alignment algorithm for MS/MS de novo sequencing results. Anal. Chem.76(8), 2220–2230 (2004).
  • Julenius K, Molgaard A, Gupta R et al. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology15(2), 153–164 (2005).
  • Xenarios I, Salwinski L, Duan XJ et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res.30(1), 303–305 (2002).
  • Zanzoni A, Montecchi-Palazzi L, Quondam M et al. MINT: a Molecular INTeraction database. FEBS Lett.513(1), 135–140 (2002).
  • Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res.31(1), 248–250 (2003).
  • Oltvai ZN, Barabasi AL. Systems biology. Life’s complexity pyramid. Science298(5594), 763–764 (2002).
  • Titz B, Schlesner M, Uetz P. What do we learn from high-throughput protein interaction data? Expert Rev. Proteomics1(1), 111–121 (2004).
  • Yu H, Luscombe NM, Lu HX et al. Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res.14(6), 1107–1118 (2004).

Website

  • Wellcome Trust – Sanger Institute www.sanger.ac.uk/projects/c.elegans/ wormpep

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.