342
Views
38
CrossRef citations to date
0
Altmetric
Review

Chromatin proteomics and epigenetic regulatory circuits

, , &
Pages 105-119 | Published online: 09 Jan 2014

References

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389(6648), 251–260 (1997).
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature403(6765), 41–45 (2000).
  • Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev.15(18), 2343–2360 (2001).
  • Cosgrove MS. Histone proteomics and the epigenetic regulation of nucleosome mobility. Expert Rev. Proteomics4(4), 465–478 (2007).
  • Rea S, Eisenhaber F, O’Carroll D et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406(6796), 593–599 (2000).
  • Wang Y, Wysocka J, Sayegh J et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science306(5694), 279–283 (2004).
  • Cuthbert GL, Daujat S, Snowden AW et al. Histone deimination antagonizes arginine methylation. Cell118(5), 545–553 (2004).
  • Chang B, Chen C, Zhao Y, Bruick RK. JMJD6 is a histone arginine demethylase. Science318(5849), 444–447 (2007).
  • Shi Y, Lan F, Matson C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119(7), 941–953 (2004).
  • Klose RJ, Yamane K, Bae Y et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature442(7100), 312–316 (2006).
  • Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet.7(9), 715–727 (2006).
  • Cosgrove MS, Boeke JD, Wolberger C. Regulated nucleosome mobility and the histone code. Nat. Struct. Mol. Biol.11(11), 1037–1043 (2004).
  • Turner BM. Decoding the nucleosome. Cell75(1), 5–8 (1993).
  • Turner BM. Histone acetylation and an epigenetic code. Bioessays22(9), 836–845 (2000).
  • de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA. Do protein motifs read the histone code? Bioessays27(2), 164–175 (2005).
  • Mellor J. It takes a PHD to read the histone code. Cell126(1), 22–24 (2006).
  • Fuchs J, Demidov D, Houben A, Schubert I. Chromosomal histone modification patterns – from conservation to diversity. Trends Plant Sci.11(4), 199–208 (2006).
  • Briggs SD, Xiao T, Sun ZW et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature418(6897), 498 (2002).
  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell128(4), 735–745 (2007).
  • Dou Y, Milne TA, Tackett AJ et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell121(6), 873–885 (2005).
  • Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125(2), 315–326 (2006).
  • Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell. Biol.8(12), 983–994 (2007).
  • Pusarla RH, Bhargava P. Histones in functional diversification. Core histone variants. FEBS J.272(20), 5149–5168 (2005).
  • Polo SE, Almouzni G. Chromatin assembly: a basic recipe with various flavours. Curr. Opin. Genet. Dev.16(2), 104–111 (2006).
  • Bustin M, Catez F, Lim JH. The dynamics of histone H1 function in chromatin. Mol. Cell.17(5), 617–620 (2005).
  • Khochbin S. Histone H1 diversity: bridging regulatory signals to linker histone function. Gene271(1), 1–12 (2001).
  • Sullivan KF. A solid foundation: functional specialization of centromeric chromatin. Curr. Opin. Genet. Dev.11(2), 182–188 (2001).
  • Zeitlin SG, Shelby RD, Sullivan KF. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol.155(7), 1147–1157 (2001).
  • Hake SB, Garcia BA, Duncan EM et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J. Biol. Chem.281(1), 559–568 (2006).
  • Bernstein E, Hake SB. The nucleosome: a little variation goes a long way. Biochem. Cell Biol.84(4), 505–517 (2006).
  • Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc. Natl Acad. Sci. USA103(17), 6428–6435 (2006).
  • Hake SB, Garcia BA, Kauer M et al. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl Acad. Sci. USA102(18), 6344–6349 (2005).
  • Tsukuda T, Fleming AB, Nickoloff JA, Osley MA. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature438(7066), 379–383 (2005).
  • Jin J, Cai Y, Li B et al. In and out: histone variant exchange in chromatin. Trends Biochem. Sci.30(12), 680–687 (2005).
  • Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J. Cell Biol.152(2), 375–384 (2001).
  • Bao Y, Konesky K, Park YJ et al. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J.23(16), 3314–3324 (2004).
  • Doyen CM, Montel F, Gautier T et al. Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J.25(18), 4234–4244 (2006).
  • Gautier T, Abbott DW, Molla A et al. Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep.5(7), 715–720 (2004).
  • Angelov D, Molla A, Perche PY et al. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol. Cell.11(4), 1033–1041 (2003).
  • Karras GI, Kustatscher G, Buhecha HR et al. The macro domain is an ADP–ribose binding module. EMBO J.24(11), 1911–1920 (2005).
  • Hernandez-Munoz I, Lund AH, van der Stoop P et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl Acad. Sci. USA102(21), 7635–7640 (2005).
  • Doyen CM, An W, Angelov D et al. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol. Cell. Biol.26(3), 1156–1164 (2006).
  • Ma Y, Jacobs SB, Jackson-Grusby L et al. DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. J. Cell Sci.118(Pt 8), 1607–1616 (2005).
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev.16(1), 6–21 (2002).
  • Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell128(4), 669–681 (2007).
  • Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev.15(5), 490–495 (2005).
  • Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell64(6), 1123–1134 (1991).
  • Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol.18(11), 6538–6547 (1998).
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science293(5532), 1089–1093 (2001).
  • Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241(1), 172–182 (2002).
  • Bienvenu T, Chelly J. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat. Rev. Genet.7(6), 415–426 (2006).
  • Yasunaga J, Taniguchi Y, Nosaka K et al. Identification of aberrantly methylated genes in association with adult T-cell leukemia. Cancer Res.64(17), 6002–6009 (2004).
  • Baylin SB, Esteller M, Rountree MR et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum. Mol. Genet.10(7), 687–692 (2001).
  • Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature447(7143), 433–440 (2007).
  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74, 481–514 (2005).
  • Mertineit C, Yoder JA, Taketo T et al. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development125(5), 889–897 (1998).
  • Shovlin TC, Bourc’his D, La Salle S et al. Sex-specific promoters regulate Dnmt3L expression in mouse germ cells. Hum. Reprod.22(2), 457–467 (2007).
  • Chan SW, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet.6(5), 351–360 (2005).
  • Blelloch R, Wang Z, Meissner A et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells24(9), 2007–2013 (2006).
  • Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol.4(3), 235–240 (2003).
  • Nishino K, Hattori N, Tanaka S, Shiota K. DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J. Biol. Chem.279(21), 22306–22313 (2004).
  • Feil R, Berger F. Convergent evolution of genomic imprinting in plants and mammals. Trends Genet.23(4), 192–199 (2007).
  • Dobosy JR, Selker EU. Emerging connections between DNA methylation and histone acetylation. Cell. Mol. Life Sci.58(5–6), 721–727 (2001).
  • Tamaru H, Zhang X, McMillen D et al. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet.34(1), 75–79 (2003).
  • Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J.21(24), 6842–6852 (2002).
  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416(6880), 556–560 (2002).
  • Lehnertz B, Ueda Y, Derijck AA et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol.13(14), 1192–1200 (2003).
  • Ooi SK, Qiu C, Bernstein E et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature448(7154), 714–717 (2007).
  • Becker PB, Horz W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem.71, 247–273 (2002).
  • Langst G, Becker PB. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta1677(1–3), 58–63 (2004).
  • Gangaraju VK, Bartholomew B. Mechanisms of ATP dependent chromatin remodeling. Mutat. Res.618(1–2), 3–17 (2007).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Pray-Grant MG, Daniel JA, Schieltz D, Yates JR III, Grant PA. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature433(7024), 434–438 (2005).
  • Wysocka J, Swigut T, Xiao H et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature442(7098), 86–90 (2006).
  • Clapier CR, Nightingale KP, Becker PB. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res.30(3), 649–655 (2002).
  • Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell97(3), 299–311 (1999).
  • Krebs JE, Kuo MH, Allis CD, Peterson CL. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev.13(11), 1412–1421 (1999).
  • Ferreira R, Eberharter A, Bonaldi T et al. Site-specific acetylation of ISWI by GCN5. BMC Mol. Biol.8(1), 73 (2007).
  • Krogan NJ, Keogh MC, Datta N et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol. Cell.12(6), 1565–1576 (2003).
  • Mizuguchi G, Shen X, Landry J et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science303(5656), 343–348 (2004).
  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol.2(5), E131 (2004).
  • Konev AY, Tribus M, Park SY et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science317(5841), 1087–1090 (2007).
  • Kusch T, Florens L, Macdonald WH et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science306(5704), 2084–2087 (2004).
  • Downs JA, Nussenzweig MC, Nussenzweig A. Chromatin dynamics and the preservation of genetic information. Nature447(7147), 951–958 (2007).
  • Zhang Y, Ng HH, Erdjument-Bromage H et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.13(15), 1924–1935 (1999).
  • Feng Q, Zhang Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev.15(7), 827–832 (2001).
  • Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391(6669), 806–811 (1998).
  • Chu CY, Rana TM. Small RNAs: regulators and guardians of the genome. J. Cell. Physiol.213(2), 412–419 (2007).
  • Grewal SI, Elgin SC. Transcription and RNA interference in the formation of heterochromatin. Nature447(7143), 399–406 (2007).
  • Verdel A, Jia S, Gerber S et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science303(5658), 672–676 (2004).
  • Bernstein E, Allis CD. RNA meets chromatin. Genes Dev.19(14), 1635–1655 (2005).
  • Irvine DV, Zaratiegui M, Tolia NH et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science313(5790), 1134–1137 (2006).
  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ. Targets of RNA-directed DNA methylation. Curr. Opin. Plant Biol.10(5), 512–519 (2007).
  • Janowski BA, Younger ST, Hardy DB et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat. Chem. Biol.3(3), 166–173 (2007).
  • Li LC, Okino ST, Zhao H et al. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl Acad. Sci. USA103(46), 17337–17342 (2006).
  • Lemons D, McGinnis W. Genomic evolution of Hox gene clusters. Science313(5795), 1918–1922 (2006).
  • Sessa L, Breiling A, Lavorgna G et al. Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA13(2), 223–239 (2007).
  • Rinn JL, Kertesz M, Wang JK et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129(7), 1311–1323 (2007).
  • Nemeth A, Strohner R, Grummt I, Langst G. The chromatin remodeling complex NoRC and TTF-I cooperate in the regulation of the mammalian rRNA genes in vivo. Nucleic Acids Res.32(14), 4091–4099 (2004).
  • Zhou Y, Grummt I. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr. Biol.15(15), 1434–1438 (2005).
  • Mayer C, Schmitz KM, Li J, Grummt I, Santoro R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell.22(3), 351–361 (2006).
  • Santoro R. The silence of the ribosomal RNA genes. Cell. Mol. Life Sci.62(18), 2067–2079 (2005).
  • Deng X, Meller VH. Non-coding RNA in fly dosage compensation. Trends Biochem. Sci.31(9), 526–532 (2006).
  • Wutz A. Xist function: bridging chromatin and stem cells. Trends Genet.23(9), 457–464 (2007).
  • Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev.20(14), 1848–1867 (2006).
  • Gerstein MB, Bruce C, Rozowsky JS et al. What is a gene, post-ENCODE? History and updated definition. Genome Res.17(6), 669–681 (2007).
  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet.8(2), 104–115 (2007).
  • Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma114(4), 212–229 (2005).
  • Shaklai S, Amariglio N, Rechavi G, Simon AJ. Gene silencing at the nuclear periphery. FEBS J.274(6), 1383–1392 (2007).
  • Handwerger KE, Gall JG. Subnuclear organelles: new insights into form and function. Trends Cell Biol.16(1), 19–26 (2006).
  • Cremer T, Cremer M, Dietzel S et al. Chromosome territories – a functional nuclear landscape. Curr. Opin. Cell Biol.18(3), 307–316 (2006).
  • Osborne CS, Chakalova L, Brown KE et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet.36(10), 1065–1071 (2004).
  • Faro-Trindade I, Cook PR. Transcription factories: structures conserved during differentiation and evolution. Biochem. Soc. Trans.34(Pt 6), 1133–1137 (2006).
  • de Laat W. Long-range DNA contacts: romance in the nucleus? Curr. Opin. Cell Biol.19(3), 317–320 (2007).
  • Lomvardas S, Barnea G, Pisapia DJ et al. Interchromosomal interactions and olfactory receptor choice. Cell126(2), 403–413 (2006).
  • Gaszner M, Felsenfeld G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat. Rev. Genet.7(9), 703–713 (2006).
  • Grimaud C, Negre N, Cavalli G. From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res.14(4), 363–375 (2006).
  • Kassis JA. Pairing-sensitive silencing, polycomb group response elements, and transposon homing in Drosophila. Adv. Genet.46, 421–438 (2002).
  • Bantignies F, Grimaud C, Lavrov S, Gabut M, Cavalli G. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev.17(19), 2406–2420 (2003).
  • Grimaud C, Bantignies F, Pal-Bhadra M et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell124(5), 957–971 (2006).
  • Schirmer EC, Foisner R. Proteins that associate with lamins: many faces, many functions. Exp. Cell Res.313(10), 2167–2179 (2007).
  • Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med.13(9), 363–372 (2007).
  • Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med.13(9), 373–380 (2007).
  • Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol.25(1), 84–90 (2007).
  • Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther.13(6), 541–552 (2006).
  • Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann. NY Acad. Sci.1100, 60–74 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.