207
Views
38
CrossRef citations to date
0
Altmetric
Review

Ubiquitin proteolytic system: focus on SUMO

&
Pages 121-135 | Published online: 09 Jan 2014

References

  • Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ. Res.100, 1276–1291 (2007).
  • Melchior F. SUMO – nonclassical ubiquitin. Ann. Rev. Cell Develop. Biol.16, 591–626 (2000).
  • Desterro JM, Thomson J, Hay RT. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett.417, 297–300 (1997).
  • Saitoh H, Sparrow DB, Shiomi T et al. Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr. Biol.8, 121–124 (1998).
  • Kerscher O. SUMO junction – what’s your function? New insights through SUMO-interacting motifs. EMBO Rep.8, 550–555 (2007).
  • Hay RT. SUMO: a history of modification. Mol. Cell18, 1–12 (2005).
  • Seeler JS, Bischof O, Nacerddine K, Dejean A. SUMO, the three Rs and cancer. Curr. Top. Microbiol. Immunol.313, 49–71 (2007).
  • Gong LM, Millas S, Maul GG, Yeh ETH. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem.275, 3355–3359 (2000).
  • Kim KI, Baek SH, Jeon YJ et al. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem.275, 14102–14106 (2000).
  • Best JL, Ganiatsas S, Agarwal S et al. SUMO-1 protease-1 regulates gene transcription through PML. Mol. Cell10, 843–855 (2002).
  • Nishida T, Kaneko F, Kitagawa M, Yasuda H. Characterization of a novel mammalian SUMO-1/Smt3-specific isopeptidase, a homologue of rat Axam, which is an Axin-binding protein promoting β-catenin degradation. J. Biol. Chem.276, 39060–39066 (2001).
  • Kadoya T, Yamamoto H, Suzuki T et al. Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of b-catenin. Mol. Cell. Biol.22, 3803–3819 (2002).
  • Saitoh H, Pu RT, Dasso M. SUMO-1: wrestling with a new ubiquitin-related modifier. Trends Biochem. Sci.22, 374–376 (1997).
  • Yeh ET, Gong L, Kamitani T. Ubiquitin-like proteins: new wines in new bottles. Gene248, 1–14 (2000).
  • Jones D, Crowe E, Stevens TA, Candido EPM. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol.3, 2.1–2.15 (2001).
  • Nacerddine K, Lehembre F, Bhaumik M et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Develop. Cell9, 769–779 (2005).
  • Zhao J. Sumoylation regulates diverse biological processes. Cell. Mol. Life Sci.19, 350–355 (2007).
  • Jakobs A, Koehnke J, Himstedt F et al. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat. Methods4, 245–250 (2007).
  • Lane CS. Mass spectrometry-based proteomics in the life sciences. Cell. Mol. Life Sci.62, 848–869 (2005).
  • Lubec G, Afjehi-Sadat L. Limitations and pitfalls in protein identification by mass spectrometry. Chem. Rev.107, 3568–3584 (2007).
  • Li TW, Evdokimov E, Shen RF et al. Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl Acad. Sci. USA101, 8551–8556 (2004).
  • Zhao YM, Kwon SW, Anselmo A, Kaur K, White MA. Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J. Biol. Chem.279, 20999–21002 (2004).
  • Bohren KM, Gabbay KH, Owerbach D. Affinity chromatography of native SUMO proteins using His-tagged recombinant UBC9 bound to Co2+-charged talon resin. Protein Expr. Purif.54, 289–294 (2007).
  • Li TW, Santockyte R, Shen RF et al. A general approach for investigating enzymatic pathways and substrates for ubiquitin-like modifiers. Arch. Biochem. Biophys.453, 70–74 (2006).
  • Vertegaal ACO, Andersen JS, Ogg SC et al. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics5, 2298–2310 (2006).
  • Panse VG, Hardeland U, Werner T, Kuster B, Hurt E. A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem.279, 41346–41351 (2004).
  • Denison C, Kirkpatrick DS, Gygi SP. Proteomic insights into ubiquitin and ubiquitin-like proteins. Curr. Opin. Chem. Biol.9, 69–75 (2005).
  • Ganesan AK, Kho Y, Kim SC et al. Broad spectrum identification of SUMO substrates in melanoma cells. Proteomics7, 2216–2221 (2007).
  • Hannich JT, Lewis A, Kroetz MB et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem.280, 4102–4110 (2005).
  • Wykoff DD, O’Shea EK. Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol. Cell. Proteomics4, 73–83 (2005).
  • Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics4, 56–72 (2005).
  • Zhou W, Ryan JJ, Zhou H. Global analyses of sumoylated proteins in Saccharomyces cerevisiae – induction of protein sumoylation by cellular stresses. J. Biol. Chem.279, 32262–32268 (2004).
  • Vertegaal ACO, Ogg SC, Jaffray E et al. A proteomic study of SUMO-2 target proteins. J. Biol. Chem.279, 33791–33798 (2004).
  • Wohlschlegel JA, Johnson ES, Reed SI, Yates JR. Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem.279, 45662–45668 (2004).
  • Manza LL, Codreanu SG, Stamer SL et al. Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem. Res. Toxicol.17, 1706–1715 (2004).
  • Oh YH, Hong MY, Jin Z et al. Chip-based analysis of SUMO (small ubiquitin-like modifier) conjugation to a target protein. Biosens. Bioelect.22, 1260–1267 (2007).
  • Gocke CB, Yu HT, Kang JS. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem.280, 5004–5012 (2005).
  • Yan J, Yang XP, Kim YS, Joo JH, Jetten AM. RAP80 interacts with the SUMO-conjugating enzyme UBC9 and is a novel target for sumoylation. Biochem. Biophys. Res. Commun.362, 132–138 (2007).
  • Gong L, Yeh ETH. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem.281, 15869–15877 (2006).
  • Mikolajczyk J, Drag M, Bekes M et al. Small ubiquitin-related modifier (SUMO)-specific proteases – profiling the specificities and activities of human SENPs. J. Biol. Chem.282, 26217–26224 (2007).
  • Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem.275, 6252–6258 (2000).
  • Deyrieux AF, Rosas-Acosta G, Ozbun MA, Wilson VG. Sumoylation dynamics during keratinocyte differentiation. J. Cell. Sci.120, 125–136 (2007).
  • Ayaydin F, Dasso M. Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol. Biol. Cell15, 5208–5218 (2004).
  • Langereis MA, Rosas-Acosta G, Mulder K, Wilson VG. Production of sumoylated proteins using a baculovirus expression system. J. Virol. Meth.139, 189–194 (2007).
  • Kurepa J, Walker JM, Smalle J et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis – accumulation of SUMO1 and -2 conjugates is increased by stress. J. Biol. Chem.278, 6862–6872 (2003).
  • Bossis G, Melchior F. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell21, 349–357 (2006).
  • Riquelme C, Barthel KK, Qin XF, Liu X. Ubc9 expression is essential for myotube formation in C2C12. Exp. Cell Res.312(11), 2132–2141 (2006).
  • Shao RJ, Rung E, Weijdegard B, Billig H. Induction of apoptosis increases SUMO-1 protein expression and conjugation in mouse periovulatory granulosa cells in vitro. Mol. Reprod. Dev.73, 50–60 (2006).
  • Smolen GA, Vassileva MT, Wells J, Matunis MJ, Haber DA. SUMO-1 modification of the Wilms’ tumor suppressor WT1. Cancer Res.64, 7846–7851 (2004).
  • Alarcon-Vargas D, Ronai Z. SUMO in cancer-wrestlers wanted. Cancer Biol. Ther.1, 237–242 (2002).
  • Mo YY, Yu YN, Theodosiou E, Ee PLR, Beck WT. A role for Ubc9 in tumorigenesis. Oncogene24, 2677–2683 (2005).
  • Baek SH. A novel link between SUMO modification and cancer metastasis. Cell Cycle5, 1492–1495 (2006).
  • Il Kim K, Baek SH. SUMOylation code in cancer development and metastasis. Mol. Cell22, 247–253 (2006).
  • Wu FT, Mo YY. Ubiquitin-like protein modifications in prostate and breast cancer. Front. Biosci.12, 700–711 (2007).
  • Karamouzis M, Konstantinopoulos P, Badra F, Papavassiliou A. SUMO and estrogen receptors in breast cancer. Breast Cancer Res. Treat.107(2), 195–210 (2007).
  • Kamitani T, Kito K, Nguyen HP et al. Identification of three major sentrinization sites in PML. J. Biol. Chem.273, 26675–26682 (1998).
  • Rangasamy D, Woytek K, Khan SA, Wilson VG. SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. J. Biol. Chem.275, 37999–38004 (2000).
  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002).
  • Chung TL, Hsiao HH, Yeh YY et al.In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein – definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides. J. Biol. Chem.279, 39653–39662 (2004).
  • Cooper HJ, Tatham MH, Jaffray E et al. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 AutoSUMOylation reaction. Anal. Chem.77, 6310–6319 (2005).
  • Pedrioli PGA, Raught B, Zhang XD et al. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods3, 533–539 (2006).
  • Knuesel M, Cheung HT, Hamady M, Barthel KKB, Liu XD. A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program. Mol. Cell. Proteomics4, 1626–1636 (2005).
  • Wohlschlegel JA, Johnson ES, Reed SI, Yates JR. Improved identification of SUMO attachment sites using C-terminal SUMO mutants and tailored protease digestion strategies. J. Proteome Res.5, 761–770 (2006).
  • Ulrich HD. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol.15, 525–532 (2005).
  • Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell2, 233–239 (1998).
  • Lin X, Liang M, Liang YY, Brunicardi FC, Feng XH. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J. Biol. Chem.278, 31043–31048 (2003).
  • Steffan JS, Agrawal N, Pallos J et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science304, 100–104 (2004).
  • Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Ann. Rev. Cell Develop. Biol.22, 159–180 (2006).
  • Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. Sequential modification of NEMO/IKK gamma by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell115, 565–576 (2003).
  • Kannouche PL, Wing J, Lehmann AR. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell14, 491–500 (2004).
  • Papouli E, Chen SH, Davies AA et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell19, 123–133 (2005).
  • Nathan D, Ingvarsdottir K, Sterner DE et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev.20, 966–976 (2006).
  • Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc. Natl Acad. Sci. USA100, 13225–13230 (2003).
  • Heun P. SUMOrganization of the nucleus. Curr. Opin. Cell Biol.19, 350–355 (2007).
  • Xirodimas DP, Chisholm J, Desterro JMS, Lane DP, Hay RT. P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Lett.528, 207–211 (2002).
  • Buschmann T, Lerner D, Lee CG, Ronai Z. The Mdm-2 amino terminus is required for Mdm2 binding and SUMO-1 conjugation by the E2 SUMO-1 conjugating enzyme Ubc9. J. Biol. Chem.276, 40389–40395 (2001).
  • Agrawal A, Yang JH, Murphy RF, Agrawal DK. Regulation of the p14ARF–Mdm2–p53 pathway: an overview in breast cancer. Exp. Mol. Path.81, 115–122 (2006).
  • Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat. Cell Biol.9, 428–435 (2007).
  • Miyauchi Y, Yogosawa S, Honda R, Nishida T, Yasuda H. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J. Biol. Chem.277, 50131–50136 (2002).
  • Lee MH, Lee SW, Lee EJ et al. SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat.Cell Biol.8, U1424–U1472 (2006).
  • Um JW, Chung KC. Functional modulation of parkin through physical interaction with SUMO-1. J. Neuro. Res.84, 1543–1554 (2006).
  • Um JW, Min DS, Rhim H et al. Parkin ubiquitinates and promotes the degradation of RanBP2. J. Biol. Chem.281, 3595–3603 (2006).
  • Pichler A, Knipscheer P, Oberhofer E et al. SUMO modification of the ubiquitin-conjugating enzyme E2–25K. Nat. Struct. Mol. Biol.12, 264–269 (2005).
  • de Pril R, Fischer DF, Roos RA, van Leeuwen FW. Ubiquitin-conjugating enzyme E2–25K increases aggregate formation and cell death in polyglutamine diseases. Mol. Cell. Neurosci.34, 10–19 (2007).
  • Pungaliya P, Kulkarni D, Park HJ et al. TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J. Proteome Res.6, 3918–3923 (2007).
  • Rajendra R, Malegaonkar D, Pungaliya P et al. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J. Biol. Chem.279, 36440–36444 (2004).
  • Weger S, Hammer E, Heilbronn R. Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett.579, 5007–5012 (2005).
  • Zhao XL, Blobel G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA102, 9086–9086 (2005).
  • Prudden J, Pebernard S, Raffa G et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J.26, 4089–4101 (2007).
  • Sun H, Leverson JD, Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J.26, 4102–4112 (2007).
  • Xie Y, Kerscher O, Kroetz MB et al. The yeast HEX3–SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem.282, 34176–34184 (2007).
  • Uzunova K, Gottsche K, Miteva M et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem.282, 34167–34175 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.