357
Views
14
CrossRef citations to date
0
Altmetric
Review

AQP1 expression analysis in human diseases: implications for proteomic characterization

, , , , &
Pages 29-44 | Published online: 09 Jan 2014

References

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem.269(20), 14648–14654 (1994).
  • Walz T, Smith BL, Zeidel ML, Engel A, Agre P. Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem.269(3), 1583–1586 (1994).
  • Jap BK, Li H. Structure of the osmo-regulated H2O-channel, AQP-CHIP, in projection at 3.5 Å resolution. J. Mol. Biol.251(3), 413–420 (1995).
  • Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem.68, 425–458 (1999).
  • Agre P, King LS, Yasui M et al. Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol.542(Pt 1), 3–16 (2002).
  • Nielsen S, Pallone T, Smith BL et al. Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am. J. Physiol.268(6 Pt 2), F1023–F1037 (1995).
  • Castle NA. Aquaporins as targets for drug discovery. Drug Discov. Today10(7), 485–493 (2005).
  • Park JH, Saier MH Jr. Phylogenetic characterization of the MIP family of transmembrane channel proteins. J. Membr. Biol.153(3), 171–180 (1996).
  • Heymann JB, Engel A. Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol. Sci.14, 187–193 (1999).
  • King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu. Rev. Physiol.58, 619–648 (1996).
  • Moon C, Williams JB, Preston GM et al. The mouse aquaporin-1 gene. Genomics30(2), 354–357 (1995).
  • Smith BL, Preston GM, Spring FA, Anstee DJ, Agre P. Human red cell aquaporin CHIP. I. Molecular characterization of ABH and Colton blood group antigens. J. Clin. Invest.94(3), 1043–1049 (1994).
  • Nejsum LN. The renal plumbing system: aquaporin water channels. Cell. Mol. Life Sci.62(15), 1692–1706 (2005).
  • Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl Acad. Sci. USA88(24), 11110–11114 (1991).
  • Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell39(1), 49–59 (1984).
  • Gonen T, Cheng Y, Sliz P et al. Lipid–protein interactions in double-layered two-dimensional AQP0 crystals. Nature438(7068), 633–638 (2005).
  • Finkelstein A. Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes: Theory and Reality. John Wiley & Sons, NY, USA (1987).
  • Morishita Y, Sakube Y, Sasaki S, Ishibashi K. Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J. Pharmacol. Sci.96(3), 276–279 (2004).
  • Itoh T, Rai T, Kuwahara M et al. Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem. Biophys. Res. Commun.330(3), 832–838 (2005).
  • Murata K, Mitsuoka K, Hirai T et al. Structural determinants of water permeation through aquaporin-1. Nature407(6804), 599–605 (2000).
  • Beuron F, Le Caherec F, Guillam MT et al. Structural analysis of a MIP family protein from the digestive tract of Cicadella viridis. J. Biol. Chem.270(29), 17414–17422 (1995).
  • Engel A, Fujiyoshi Y, Agre P. The importance of aquaporin water channel protein structures. EMBO J.19(5), 800–806 (2000).
  • Verbavatz JM, Brown D, Sabolic I et al. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J. Cell Biol.123(3), 605–618 (1993).
  • Lagree V, Froger A, Deschamps S et al. Oligomerization state of water channels and glycerol facilitators. Involvement of loop E. J. Biol. Chem.273(51), 33949–33953 (1998).
  • Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J. Cell Biol.120(2), 371–383 (1993).
  • Marinelli RA, Tietz PS, Pham LD et al. Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am. J. Physiol.276(1 Pt 1), G280–G286 (1999).
  • Verkman AS. Aquaporin water channels and endothelial cell function. J. Anat.200(6), 617–627 (2002).
  • Zeidel ML, Nielsen S, Smith BL et al. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry33(6), 1606–1615 (1994).
  • Agre P, Lee MD, Devidas S, Guggino WB. Aquaporins and ion conductance. Science275(5305), 1490; author reply 1492 (1997).
  • Echevarria M, Munoz-Cabello AM, Sanchez-Silva R, Toledo-Aral JJ, Lopez-Barneo J. Development of cytosolic hypoxia and hypoxia-inducible factor stabilization are facilitated by aquaporin-1 expression. J. Biol. Chem.282(41), 30207–30215 (2007).
  • Hopkins AL, Groom CR, Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today9(10), 430–431 (2004).
  • Schindler J, Nothwang HG. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics6(20), 5409–5417 (2006).
  • Speers AE, Wu CC. Proteomics of integral membrane proteins – theory and application. Chem. Rev.107(8), 3687–3714 (2007).
  • Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis21(6), 1054–1070 (2000).
  • Wilkins MR, Gasteiger E, Sanchez JC, Bairoch A, Hochstrasser DF. Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy number. Electrophoresis19(8–9), 1501–1505 (1998).
  • Zhang L, Xie J, Wang X et al. Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins. Proteomics5(17), 4510–4524 (2005).
  • Chen CC, Yang SH, Lin JK et al. Is it reasonable to add preoperative serum level of CEA and CA19–9 to staging for colorectal cancer? J. Surg. Res.124(2), 169–174 (2005).
  • Whittemore AS, Cirillo PM, Feldman D, Cohn BA. Prostate specific antigen levels in young adulthood predict prostate cancer risk: results from a cohort of Black and White Americans. J. Urol.174(3), 872–876; discussion 876 (2005).
  • Sogaard CH, Lindegaard JC, Havsteen H, Nielsen OS, Mogensen O. Chemotherapy-induced changes of CA 125 in patients with epithelial ovarian cancer. Gynecol. Oncol.97(2), 410–412 (2005).
  • Weinberger PM, Yu Z, Kowalski D et al. Differential expression of epidermal growth factor receptor, c-Met, and HER2/neu in chordoma compared with 17 other malignancies. Arch. Otolaryngol. Head Neck Surg.131(8), 707–711 (2005).
  • Blonder J, Chan KC, Issaq HJ, Veenstra TD. Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat. Protoc.1(6), 2784–2790 (2006).
  • Fischer F, Wolters D, Rogner M, Poetsch A. Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol. Cell Proteomics5(3), 444–453 (2006).
  • Braun RJ, Kinkl N, Beer M, Ueffing M. Two-dimensional electrophoresis of membrane proteins. Anal. Bioanal. Chem.389(4), 1033–1045 (2007).
  • Huber LA, Pfaller K, Vietor I. Organelle proteomics: implications for subcellular fractionation in proteomics. Circ. Res.92(9), 962–968 (2003).
  • Stasyk T, Huber LA. Zooming in: fractionation strategies in proteomics. Proteomics4(12), 3704–3716 (2004).
  • Blonder J, Conrads TP, Veenstra TD. Characterization and quantitation of membrane proteomes using multidimensional MS-based proteomic technologies. Expert Rev. Proteomics1(2), 153–163 (2004).
  • Pasquali C, Fialka I, Huber LA. Subcellular fractionation, electromigration analysis and mapping of organelles. J. Chromatogr. B Biomed. Sci. Appl.722(1–2), 89–102 (1999).
  • van Hoek AN, Wiener MC, Verbavatz JM et al. Purification and structure-function analysis of native, PNGase F-treated, and endo-β-galactosidase-treated CHIP28 water channels. Biochemistry34(7), 2212–2219 (1995).
  • Fotiadis D, Suda K, Tittmann P et al. Identification and structure of a putative Ca2+-binding domain at the C terminus of AQP1. J. Mol. Biol.318(5), 1381–1394 (2002).
  • Blonder J, Hale ML, Chan KC et al. Quantitative profiling of the detergent-resistant membrane proteome of iota-b toxin induced Vero cells. J. Proteome Res.4(2), 523–531 (2005).
  • Palestini P, Calvi C, Conforti E et al. Compositional changes in lipid microdomains of air–blood barrier plasma membranes in pulmonary interstitial edema. J. Appl. Physiol.95(4), 1446–1452 (2003).
  • Michel V, Bakovic M. Lipid rafts in health and disease. Biol. Cell99(3), 129–140 (2007).
  • Ticozzi-Valerio D, Raimondo F, Pitto M et al. Differential expression of AQP1 in microdomain-enriched membranes of renal cell carcinoma. Proteomics Clin. Appl.1(6), 588–597 (2007).
  • Preston GM, Jung JS, Guggino WB, Agre P. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem.269(3), 1668–1673 (1994).
  • Schey KL, Little M, Fowler JG, Crouch RK. Characterization of human lens major intrinsic protein structure. Invest. Ophthalmol. Vis. Sci.41(1), 175–182 (2000).
  • Barile M, Pisitkun T, Yu MJ et al. Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol. Cell Proteomics4(8), 1095–1106 (2005).
  • Hoorn EJ, Pisitkun T, Zietse R et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton)10(3), 283–290 (2005).
  • Slomianny MC, Dupont A, Bouanou F et al. Profiling of membrane proteins from human macrophages: comparison of two approaches. Proteomics6(8), 2365–2375 (2006).
  • Cutillas PR, Biber J, Marks J et al. Proteomic analysis of plasma membrane vesicles isolated from the rat renal cortex. Proteomics5(1), 101–112 (2005).
  • Blonder J, Hale ML, Lucas DA et al. Proteomic analysis of detergent-resistant membrane rafts. Electrophoresis25(9), 1307–1318 (2004).
  • Scheurer SB, Rybak JN, Roesli C et al. Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics5(11), 2718–2728 (2005).
  • Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J. Proteome Res.5(3), 651–658 (2006).
  • Julka S, Regnier F. Quantification in proteomics through stable isotope coding: a review. J. Proteome Res.3(3), 350–363 (2004).
  • Pisitkun T, Bieniek J, Tchapyjnikov D et al. High-throughput identification of IMCD proteins using LC-MS/MS. Physiol. Genomics25(2), 263–276 (2006).
  • Jin SY, Liu YL, Xu LN et al. Cloning and characterization of porcine aquaporin 1 water channel expressed extensively in gastrointestinal system. World J. Gastroenterol.12(7), 1092–1097 (2006).
  • Han Z, Patil RV. Protein kinase A-dependent phosphorylation of aquaporin-1. Biochem. Biophys. Res. Commun.273(1), 328–332 (2000).
  • Leitch V, Agre P, King LS. Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc. Natl Acad. Sci. USA98(5), 2894–2898 (2001).
  • Nielsen S, Frokiaer J, Marples D et al. Aquaporins in the kidney: from molecules to medicine. Physiol. Rev.82(1), 205–244 (2002).
  • Biner HL, Arpin-Bott MP, Loffing J et al. Human cortical distal nephron: distribution of electrolyte and water transport pathways. J. Am. Soc. Nephrol.13(4), 836–847 (2002).
  • Maunsbach AB, Marples D, Chin E et al. Aquaporin-1 water channel expression in human kidney. J. Am. Soc. Nephrol.8(1), 1–14 (1997).
  • Ma T, Yang B, Gillespie A et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem.273(8), 4296–4299 (1998).
  • Nielsen S, Agre P. The aquaporin family of water channels in kidney. Kidney Int.48(4), 1057–1068 (1995).
  • Pallone TL, Kishore BK, Nielsen S, Agre P, Knepper MA. Evidence that aquaporin-1 mediates NaCl-induced water flux across descending vasa recta. Am. J. Physiol.272(5 Pt 2), F587–F596 (1997).
  • Bedford JJ, Leader JP, Walker RJ. Aquaporin expression in normal human kidney and in renal disease. J. Am. Soc. Nephrol.14(10), 2581–2587 (2003).
  • Jenq W, Mathieson IM, Ihara W, Ramirez G. Aquaporin-1: an osmoinducible water channel in cultured mIMCD-3 cells. Biochem. Biophys. Res. Commun.245(3), 804–809 (1998).
  • Jenq W, Cooper DR, Bittle P, Ramirez G. Aquaporin-1 expression in proximal tubule epithelial cells of human kidney is regulated by hyperosmolarity and contrast agents. Biochem. Biophys. Res. Commun.256(1), 240–248 (1999).
  • Tang S, Leung JC, Lam CW et al.In vitro studies of aquaporins 1 and 3 expression in cultured human proximal tubular cells: upregulation by transferrin but not albumin. Am. J. Kidney Dis.38(2), 317–330 (2001).
  • Umenishi F, Schrier RW. Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J. Biol. Chem.278(18), 15765–15770 (2003).
  • King LS, Choi M, Fernandez PC, Cartron JP, Agre P. Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N. Engl. J. Med.345(3), 175–179 (2001).
  • Bachinsky DR, Sabolic I, Emmanouel DS et al. Water channel expression in human ADPKD kidneys. Am. J. Physiol.268(3 Pt 2), F398 (1995).
  • Devuyst O, Nielsen S, Cosyns JP et al. Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum. Am. J. Physiol.275(1 Pt 2), H234–H242 (1998).
  • Kobayashi H, Yokoo H, Yanagita T et al. Induction of aquaporin 1 by dexamethasone in lipid rafts in immortalized brain microvascular endothelial cells. Brain Res.1123(1), 12–19 (2006).
  • Boassa D, Yool AJ. Physiological roles of aquaporins in the choroid plexus. Curr. Top. Dev. Biol.67, 181–206 (2005).
  • Zador Z, Bloch O, Yao X, Manley GT. Aquaporins: role in cerebral edema and brain water balance. Prog. Brain Res.161, 185–194 (2007).
  • Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H. Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo. Neuropathology27(3), 245–256 (2007).
  • Rodriguez A, Perez-Gracia E, Espinosa JC et al. Increased expression of water channel aquaporin 1 and aquaporin 4 in Creutzfeldt–Jakob disease and in bovine spongiform encephalopathy-infected bovine-PrP transgenic mice. Acta Neuropathol.112(5), 573–585 (2006).
  • Matsuzaki T, Tajika Y, Ablimit A et al. Aquaporins in the digestive system. Med. Electron Microsc.37(2), 71–80 (2004).
  • Tamai K, Fukushima K, Ueno Y et al. Differential expressions of aquaporin proteins in human cholestatic liver diseases. Hepatol. Res.34(2), 99–103 (2006).
  • Mints M, Hildenbrand A, Lalitkumar LP et al. Expression of aquaporin-1 in endometrial blood vessels in menorrhagia. Int. J. Mol. Med.19(3), 407–411 (2007).
  • Macnamara E, Sams GW, Smith K et al. Aquaporin-1 expression is decreased in human and mouse corneal endothelial dysfunction. Mol. Vis.10, 51–56 (2004).
  • Buemi M, Floccari F, Di Pasquale G et al. AQP1 in red blood cells of uremic patients during hemodialytic treatment. Nephron92(4), 846–852 (2002).
  • Frigeri A, Nicchia GP, Svelto M. Aquaporins as targets for drug discovery. Curr. Pharm. Des.13(23), 2421–2427 (2007).
  • Esteva-Font C, Baccaro ME, Fernandez-Llama P et al. Aquaporin-1 and aquaporin-2 urinary excretion in cirrhosis: relationship with ascites and hepatorenal syndrome. Hepatology44(6), 1555–1563 (2006).
  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc. Natl Acad. Sci. USA101(36), 13368–13373 (2004).
  • Mazal PR, Susani M, Wrba F, Haitel A. Diagnostic significance of aquaporin-1 in liver tumors. Hum. Pathol.36(11), 1226–1231 (2005).
  • Mobasheri A, Airley R, Hewitt SM, Marples D. Heterogeneous expression of the aquaporin 1 (AQP1) water channel in tumors of the prostate, breast, ovary, colon and lung: a study using high density multiple human tumor tissue microarrays. Int. J. Oncol.26(5), 1149–1158 (2005).
  • Moon C, Soria JC, Jang SJ et al. Involvement of aquaporins in colorectal carcinogenesis. Oncogene22(43), 6699–6703 (2003).
  • Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature434(7034), 786–792 (2005).
  • McCoy E, Sontheimer H. Expression and function of water channels (aquaporins) in migrating malignant astrocytes. Glia55(10), 1034–1043 (2007).
  • Chen Y, Tachibana O, Oda M et al. Increased expression of aquaporin 1 in human hemangioblastomas and its correlation with cyst formation. J. Neurooncol.80(3), 219–225 (2006).
  • Guan B, Zhu D, Dong Z, Yang Z. Expression and distribution of aquaporin 1 in laryngeal carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi21(6), 269–272 (2007).
  • Mu SM, Ji XH, Ma B, Yu HM, Li XJ. Differential protein analysis in rat renal proximal tubule epithelial cells in response to acetazolamide and its relation with the inhibition of AQP1. Yao Xue Xue Bao38(3), 169–172 (2003).
  • Xiang Y, Ma B, Li T et al. Acetazolamide inhibits aquaporin-1 protein expression and angiogenesis. Acta Pharmacol. Sin.25(6), 812–816 (2004).
  • Ma B, Xiang Y, Li T, Yu HM, Li XJ. Inhibitory effect of topiramate on Lewis lung carcinoma metastasis and its relation with AQP1 water channel. Acta Pharmacol. Sin.25(1), 54–60 (2004).
  • Takenawa J, Kaneko Y, Kishishita M et al. Transcript levels of aquaporin 1 and carbonic anhydrase IV as predictive indicators for prognosis of renal cell carcinoma patients after nephrectomy. Int. J. Cancer79(1), 1–7 (1998).
  • Parkkila S, Rajaniemi H, Parkkila AK et al. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc. Natl Acad. Sci. USA97(5), 2220–2224 (2000).
  • Endeward V, Musa-Aziz R, Cooper GJ et al. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J.20(12), 1974–1981 (2006).
  • Endo M, Jain RK, Witwer B, Brown D. Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc. Res.58(2), 89–98 (1999).
  • Yang JH, Shi YF, Cheng Q, Qian YL. Protein and mRNA expression of aquaporin-1 in epithelial ovarian tumors and its clinic significance. Zhonghua Fu Chan Ke Za Zhi40(9), 623–626 (2005).
  • Oshio K, Binder DK, Liang Y et al. Expression of the aquaporin-1 water channel in human glial tumors. Neurosurgery56(2), 375–381; discussion 375–381 (2005).
  • Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S. Increased aquaporin 1 water channel expression in human brain tumours. Br. J. Cancer87(6), 621–623 (2002).
  • Badaut J, Brunet JF, Grollimund L et al. Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Acta Neurochir. Suppl.86, 495–498 (2003).
  • Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatr.72(2), 262–265 (2002).
  • Hoque MO, Soria JC, Woo J et al. Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth. Am. J. Pathol.168(4), 1345–1353 (2006).
  • Moon C, Rousseau R, Soria JC et al. Aquaporin expression in human lymphocytes and dendritic cells. Am. J. Hematol.75(3), 128–133 (2004).
  • Yoshiji H, Kuriyama S, Yoshii J et al. Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology35(4), 834–842 (2002).
  • Vasudevan A, Davies RJ, Shannon BA, Cohen RJ. Incidental renal tumours: the frequency of benign lesions and the role of preoperative core biopsy. BJU Int.97(5), 946–949 (2006).
  • Baer PC, Bereiter-Hahn J, Schubert R, Geiger H. Differentiation status of human renal proximal and distal tubular epithelial cells in vitro: differential expression of characteristic markers. Cells Tissues Organs184(1), 16–22 (2006).
  • Mazal PR, Stichenwirth M, Koller A et al. Expression of aquaporins and PAX-2 compared to CD10 and cytokeratin 7 in renal neoplasms: a tissue microarray study. Mod. Pathol.18(4), 535–540 (2005).
  • Murakami T, Sano F, Huang Y et al. Identification and characterization of Birt-Hogg-Dube associated renal carcinoma. J. Pathol.211(5), 524–531 (2007).
  • Sarto C, Deon C, Doro G et al. Contribution of proteomics to the molecular analysis of renal cell carcinoma with an emphasis on manganese superoxide dismutase. Proteomics1(10), 1288–1294 (2001).
  • Unwin RD, Craven RA, Harnden P et al. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics3(8), 1620–1632 (2003).
  • Hwa JS, Park HJ, Jung JH et al. Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J. Korean Med. Sci.20(3), 450–455 (2005).
  • Dallmann K, Junker H, Balabanov S et al. Human agmatinase is diminished in the clear cell type of renal cell carcinoma. Int. J. Cancer108(3), 342–347 (2004).
  • Perroud B, Lee J, Valkova N et al. Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol. Cancer5, 64 (2006).
  • Seliger B, Menig M, Lichtenfels R et al. Identification of markers for the selection of patients undergoing renal cell carcinoma-specific immunotherapy. Proteomics3(6), 979–990 (2003).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.