225
Views
21
CrossRef citations to date
0
Altmetric
Review

High-dimensional biology to comprehend hepatocellular carcinoma

&
Pages 45-60 | Published online: 09 Jan 2014

References

  • Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin. Liver Dis.19, 271–285 (1999).
  • Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet362, 1907–1917 (2003).
  • Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet.31, 339–346 (2002).
  • Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States, a population based case control study. Gut54, 533–539 (2005).
  • Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma, Chemoembolization improves survival. Hepatology37, 429–442 (2003).
  • Chang MH, Shau WY, Chen CJ et al. Hepatitis B vaccination and hepatocellular carcinoma rates in boys and girls. JAMA284, 3040–3042 (2000).
  • El-Serag HB. Hepatocellular carcinoma, recent trends in the United States. Gastroenterology127, S27–S34 (2004).
  • Deuffic S, Poynard T, Buffat L, Valleron AJ. Trends in primary liver cancer. Lancet351, 214–215 (1998).
  • Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis, incidence and risk factors. Gastroenterology127, S35–S50 (2004).
  • Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin. Liver Dis.27, 55–76 (2007).
  • Herath NI, Leggett BA, MacDonald GA. Review of genetic and epigenetic alterations in hepatocarcinogenesis. J. Gastroenterol. Hepatol.21, 15–21 (2006).
  • Kallioniemi A, Kallioniemi OP, Sudar D et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science258, 818–821 (1992).
  • Sy SM, Wong N, Lai PB, To KF, Johnson PJ. Regional over-representations on chromosomes 1q, 3q and 7q in the progression of hepatitis B virus-related hepatocellular carcinoma. Mod. Pathol.18, 686–692 (2005).
  • Katoh H, Shibata T, Kokubu A et al. Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization, identification of genetic indicators to predict patient outcome. J. Hepatol.43, 863–874 (2005).
  • Guan XY, Fang Y, Sham JS et al. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer29,110–116 (2000).
  • Pang A, Ng IO, Fan ST, Kwong YL. Clinicopathologic significance of genetic alterations in hepatocellular carcinoma. Cancer Genet. Cytogenet.146, 8–15 (2003).
  • Wong N, Lai P, Lee SW et al. Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis, relationship to disease stage, tumor size, and cirrhosis. Am. J. Pathol.154, 37–43 (1999).
  • Bentz M, Plesch A, Stilgenbauer S, Dohner H, Lichter P. Minimal sizes of deletions detected by comparative genomic hybridization. Genes Chromosomes Cancer21, 172–175 (1998).
  • Hashimoto K, Mori N, Tamesa T et al. Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH. Mod. Pathol.17, 617–622 (2004).
  • Midorikawa Y, Yamamoto S, Ishikawa S et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene25, 5581–5590 (2006).
  • Ishikawa S, Komura D, Tsuji S et al. Allelic dosage analysis with genotyping microarrays. Biochem. Biophys. Res. Commun.333, 1309–1314 (2005).
  • Kato N, Ji G, Wang Y et al. Large-scale search of single nucleotide polymorphisms for hepatocellular carcinoma susceptibility genes in patients with hepatitis C. Hepatology42, 846–853 (2005).
  • Torbenson M, Kannangai R, Abraham S et al. Concurrent evaluation of p53, β-catenin, and a-fetoprotein expression in human hepatocellular carcinoma. Am. J. Clin. Pathol.122, 377–382 (2004).
  • Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science257, 967–971 (1992).
  • Diatchenko L, Lau YF, Campbell AP et al. Suppression subtractive hybridization, a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl Acad. Sci. USA93, 6025–6030 (1996).
  • Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science259, 946–951 (1993).
  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270, 467–470 (1995).
  • Lockhart DJ, Dong H, Byrne MC et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol.14, 1675–1680 (1996).
  • Brazma A, Hinqamp P, Quackenbush J et al. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat. Genet.29, 365–371.
  • Xu XR, Huang J, Xu ZG et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl Acad. Sci. USA98, 15089–15094 (2001).
  • Midorikawa Y, Makuuchi M, Tang W, Aburatani H. Microarray-based analysis for hepatocellular carcinoma: from gene expression profiling to new challenges. World J. Gastroenterol.13, 1487–1492 (2007).
  • Smith MW, Yue ZN, Korth MJ et al. Hepatitis C virus and liver disease, global transcriptional profiling and identification of potential markers. Hepatology38, 1458–1467 (2003).
  • Segal E, Sirlin CB, Ooi C et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol.25, 675–680 (2007).
  • Bird A. Perceptions of epigenetics. Nature447, 396–398 (2007).
  • He L, Hannon GJ. MicroRNAs, small RNAs with a big role in gene regulation. Nat. Rev. Genet.5, 522–531 (2004).
  • Miska EA. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev.5, 563–568 (2005).
  • Zamore PD, Haley B. Ribo-gnome, the big world of small RNAs. Science309, 1519–1524 (2005).
  • Yang B, Guo M, Herman JG, Clark DP. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am. J. Pathol.163, 1101–1107 (2003).
  • Matsuda Y, Ichida T, Matsuzawa J, Sugimura K, Asakura H. p16INK4 is inactivated by extensive CpG methylation in human hepatocellular carcinoma. Gastroenterology16, 394–400 (1999).
  • Kanai Y, Ushijima S, Hui AM et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int. J. Cancer71, 355–359 (1997).
  • Yamada S, Nomoto S, Fujii T et al. Frequent promoter methylation of M-cadherin in hepatocellular carcinoma is associated with poor prognosis. Anticancer Res.27, 2269–2274 (2007).
  • Wong CM, Ng YL, Lee JM et al. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology45, 1129–1138 (2007).
  • Huang J, Zhang YL, Teng XM et al. Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma. BMC Cancer7, 126 (2007).
  • Calvisi DF, Ladu S, Gorden A et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J. Clin. Invest.117, 2713–2722 (2007).
  • Oh BK, Kim H, Park HJ et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int. J. Mol. Med.20, 65–73 (2007).
  • Kondo Y, Shen L, Suzuki S et al. Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol. Res.37, 974–983 (2007).
  • Murakami Y, Yasuda T, Saigo K et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene25, 2537–2545 (2006).
  • Meng F, Henson R, Wehbe-Janek H et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology133, 647–658 (2007).
  • Thorgeirsson SS, Lee JS, Grisham JW. Functional genomics of hepatocellular carcinoma. Hepatology43, S145–S150. (2006).
  • Xu L, Geman D, Winslow RL. Large-scale integration of cancer microarray data identifies a robust common cancer signature. BMC Bioinformatics8, 275 (2007).
  • Kimura M. Evolutionary rate at the molecular level. Nature217, 624–626 (1968).
  • King JL, Jukes TH. Non-Darwinian evolution. Science164, 788–798 (1969).
  • Kaposi-Novak P, Lee JS, Gomez-Quiroz L et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest.116, 1582–1595 (2006).
  • Su WH, Chao CC, Yeh SH et al. OncoDB.HCC: an integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci. Nucl. Acids Res.35, D727–D731 (2007).
  • Stock P, Monga D, Tan X et al. Platelet-derived growth factor receptor-a: a novel therapeutic target in human hepatocellular cancer. Mol. Cancer Ther.6, 1932–1941 (2007).
  • Gusarova GA, Wang IC, Major ML et al. A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J. Clin. Invest.117, 99–111 (2007).
  • Ito H, Funahashi S, Yamauchi N et al. Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin. Cancer Res.12, 3257–3264 (2006).
  • Fountoulakis M, Berndt P, Boelsteri UA et al. Two-dimensional database of mouse liver proteins: changes in hepatic protein levels following treatment with acetaminophen or its nontoxic regioisomer 3-acetamidophenol. Electrophoresis21, 2148–2161 (2000).
  • Chevalier S, Macdonald N, Tonge R et al. Proteomic analysis of differential protein expression in primary hepatocytes induced by EGF, tumor necrosis factor a or the peroxisome proliferator nafenopin. Eur. J. Biochem.267, 4624–4634 (2000).
  • Kim W, Lim SO, Kim J-S et al. Comparison of proteome between hepatitis B Virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin. Cancer Res.9, 5493–5500 (2003).
  • Lim SO, Park SJ, Kim W et al. Proteome analysis of hepatocellular carcinoma. Biochem. Biophys. Res. Commun.291, 1031–1037 (2002).
  • Park KS, Kim H, Kim NG et al. Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatology35, 1459–1466 (2002).
  • Yokoyama Y, Kuramitsu Y, Takashima M et al. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics4, 2111–2116 (2004).
  • Packer NH, Pawlak A, Kett WC et al. Proteome analysis of glycoforms: a review of strategies for the microcharacterisation of glycoproteins separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis18, 452–460 (1997).
  • Muller DR, Schindler P, Coulot M, Voshol H, van Oostrum J. Mass spectrometric characterization of stathmin isoforms separated by 2D PAGE. J. Mass Spectrom.34, 336–345 (1999).
  • Kim J, Kim SH, Lee SU et al. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of disease-related proteins. Electrophoresis23, 4142–4156 (2002).
  • Paradis V, Degos F, Dargère D et al. Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology41, 40–47 (2005).
  • Steel LF, Shumpert D, Trotter M et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics3, 601–609 (2003).
  • Naour FL, Brichory F, Misek DE et al. A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol. Cell. Proteomics1, 197–203 (2002).
  • Takashima M, Kuramitsu Y, Yokoyama Y et al. Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. Proteomics6, 3894–3900 (2006).
  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Bioanal. Chem.382, 669–678 (2005).
  • Alban A, David SO, Bjorkesten L et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics3, 36–44 (2003).
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis18, 2071–2077 (1997).
  • Zhou G, Li H, DeCamp D et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers Mol. Cell. Proteomics1, 117–123 (2002).
  • Lee IN, Chen CH, Sheu JC et al. Identification of human hepatocellular carcinoma-related biomarkers by two-dimensional difference gel electrophoresis and mass spectrometry. J. Proteome Res.4, 2062–2069 (2005).
  • Sun W, Xing B, Sun Y et al. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol. Cell. Proteomics6, 1798–1808 (2007).
  • Zhou H, Liu Y, Chui J et al. Investigation on glycosylation patterns of proteins from human liver cancer cell lines based on the multiplexed proteomics technology. Arch. Biochem. Biophys.459, 70–78 (2007).
  • Zang L, Toy DP, Hancock WS, Sgroi DC, Karger BL. Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and 16O/18O isotopic labeling. J. Proteome Res.3, 604–612 (2004).
  • Li C, Hong Y, Tan YX et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol. Cell. Proteomics3, 399–409 (2004).
  • Lin Z, Crockett DK, Jenson SD, Lim MS, Elenitoba-Johnson KS. Quantitative proteomic and transcriptional analysis of the response to the p38 mitogen-activated protein kinase inhibitor SB203580 in transformed follicular lymphoma cells. Mol. Cell. Proteomics3, 820–833 (2004).
  • Liu W, Guan M, Wu D et al. Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients. Eur. Urol.,47, 456–462 (2005).
  • Woong-Shick A, Sung-Pil P, Su-Mi B et al. Identification of hemoglobin-a and -b subunits as potential serum biomarkers for the diagnosis and prognosis of ovarian cancer. Cancer Sci.,96, 197–201 (2005).
  • Malik G, Ward MD, Gupta SK et al. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin. Cancer Res.11, 1073–1085 (2005).
  • Jacobs IJ, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol. Cell. Proteomics3, 355–366 (2004).
  • Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol. Cell. Proteomics3, 367–378 (2004).
  • Laskin J, Futrell JH, Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom. Rev.24, 135–167 (2005).
  • Batista CV, del Pozo L, Zamudio FZ et al. Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.803, 55–66 (2004).
  • Clifton JG, Li X, Reutter W, Hixson DC, Josic D. Comparative proteomics of rat liver and Morris hepatoma 7777 plasma membranes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.849, 293–301 (2007).
  • Paoletti AC, Zybailov B, Washburn MP. Principles and applications of multidimensional protein identification technology. Expert Rev. Proteomics1, 275–282 (2004).
  • Somiari RI, Somiari S, Russell S, Shriver CD. Proteomics of breast carcinoma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.815, 215–225 (2005).
  • Jue-Liang H, Shu-Hui C. Recent progress in quantitative proteomics using stable isotope labeling, multidimensional liquid chromatography and mass spectrometry Curr. Proteomics2, 287–302 (2005).
  • Evans G.A. Designer science and the ‘-omic’ revolution. Nature Biotechnol.18, 127 (2000).
  • Hocquette JE. Where are we in genomics? J. Physiol. Pharmacol.56, 37–70 (2005).
  • Grivet J-P, Delort AM, Portais JC. NMR and microbiology: from physiology to metabolomics. Biochimie85, 823–840 (2003).
  • Buchholz A, Hurlebaus J, Wandrey C, Takors R. Metabolomics: quantification of intracellular metabolite dynamics. Biomol. Eng.19, 5–15 (2002).
  • ter Kuile BH, Westerhoff HV. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett.500, 169–171 (2001).
  • Eakin RT, Morgan LO, Gregg CT, Matwiyoff NA. Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate. FEBS Lett.28, 259–264 (1972).
  • Griffin JL. The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos. Trans. R Soc. Lond. B Biol. Sci.359, 857–871 (2004).
  • Griffiths JR, McSheehy PM, Robinson SP et al. Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1β (HIF-1β): evidence of an anabolic role for the HIF-1 pathway. Cancer Res.62, 688–695 (2002).
  • Griffiths JR, Stubbs M. Opportunities for studying cancer by metabolomics: Preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv. Enzyme Regul.43, 67–76 (2003).
  • Griffin JL, Kauppinen RA. Tumour metabolomics in animal models of human cancer. J. Proteome Res.6, 498–505 (2007).
  • Zhao WD, Guan S, Zhou KR et al.in vivo detection of metabolic changes by 1H-MRS in the DEN-induced hepatocellular carcinoma in Wistar rat. J. Cancer Res. Clin. Oncol.131, 597–602 (2005).
  • Kusano M, Fukushima A, Kobayashi M et al. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.855, 71–79 (2007).
  • Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for identifying kidney cancerr. Anal. Biochem.363, 185–195 (2007).
  • Borzio M, Fargion S, Borzio F et al. Impact of large regenerative, low grade and high grade dysplastic nodules in hepatocellular carcinoma development. J. Hepatol.39, 208–214 (2003).
  • Kojiro M, Roskams T. Early hepatocellular carcinoma and dysplastic nodules. Semin. Liver Dis.25,133–142 (2005).
  • Nam SW, Park JY, Ramasamy A et al. Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology42, 809–818 (2005).
  • Llovet JM, Chen Y, Wurmbach E et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology131, 1758–1767 (2006).
  • Boyault S, Rickman DS, de Reynies A et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology45, 42–52 (2007).
  • Lee JS, Thorgeirsson SS. Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology127, S51–S55 (2004).
  • Nishida N, Nishimura T, Nagasaka T et al. Extensive methylation is associated with β-catenin mutations in hepatocellular carcinoma, evidence for two distinct pathways of human hepatocarcinogenesis. Cancer Res.67, 4586–4594 (2007).
  • Kim YJ, Lee HS, Im JP et al. Association of transforming growth factor-β1 gene polymorphisms with a hepatocellular carcinoma risk in patients with chronic hepatitis B virus infection. Exp. Mol. Med.35, 196–202 (2003).
  • Iizuka N, Oka M, Yamada-Okabe H et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet361, 923–929 (2003).
  • Lee WC, Lee KH. Applications of affinity chromatography in proteomics. Anal. Biochem.324, 1–10 (2004).
  • Trakselis MA, Alley SC, Ishmael FT. Identification and mapping of protein–protein interactions by a combination of cross-linking, cleavage, and proteomics. Bioconjug. Chem.16, 741–750 (2005).
  • Hu S, Li Y, Liu G et al. A protein chip approach for high-throughput antigen identification and characterization. Proteomics7, 2151–2161 (2007).
  • Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001).
  • Kano M, Nishimura K, Ishikawa S et al. Expression imbalance map: a new visualization method for detection of mRNA expression imbalance regions. Physiol. Genomics13, 31–46 (2003).
  • Midorikawa Y, Tsutsumi S, Nishimura K et al. Distinct chromosomal bias of gene expression signatures in the progression of hepatocellular carcinoma. Cancer Res.64, 7263–7270 (2004).
  • Goesmann A, Linke B, Bartels D et al. BRIGEP – the BRIDGE-based genome–transcriptome–proteome browser. Nucl. Acid Res.33, W710–W716 (2005).
  • Drews O, Gorg A. DynaProt 2D: an advanced proteomic database for dynamic online access to proteomes and two-dimensional electrophoresis gels. Nucl. Acid Res.33, D583–D587 (2005).
  • Liang RCMY, Neo JCH, Lo SL et al. Proteome database of hepatocellular carcinoma. J. Chromatogr. B771, 303–328 (2002).
  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome Nucl. Acids Res.32, D277–D280 (2004).
  • Krummenacker M, Paley S, Mueller L, Yan T, Karp PD. Querying and computing with BioCyc databases. Bioinformatics21, 3454–3455 (2005).
  • Joshi-Tope G, Gillespie M, Vastrik I et al. Reactome: a knowledgebase of biological pathways Nucl. Acids Res.33, D428–D432 (2005).
  • Arita M. Additional paper: computational resources for metabolomics. Brief. Funct. Genomic. Proteomic.3, 84–93 (2004).
  • Wishart DS, Tzur D, Knox C et al. HMDB: the Human Metabolome Database. Nucl. Acids Res.35, D521–D526 (2007).
  • Sauer S, Lange BM, Gobom J et al. Miniaturization in functional genomics and proteomics. Nat. Rev. Genet.6, 465–476 (2005).
  • Predki PF. Functional protein microarrays: ripe for discovery. Curr. Opin. Chem. Biol.8, 8–13 (2004).
  • Vautier G, Bomford AB, Portmann BC et al. p53 mutations in british patients with hepatocellular carcinoma, clustering in genetic hemochromatosis. Gastroenterology117, 154–160 (1999).
  • Laurent-Puig P, Legoix P, Bluteau O et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology120, 1763–1773 (2001).
  • Boix-Ferrero J, Pellin A, Blesa R, Adrados , Llombart-Bosch A. Absence of p53 gene mutations in hepatocarcinomas from a Mediterranean area of Spain. A study of 129 archival tumour samples. Virchows Arch.434, 497–501 (1999).
  • Hsu HC, Jeng YM, Mao TL et al. β-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am. J. Pathol.157, 763–770 (2000).
  • Legoix P, Bluteau O, Bayer J et al. β-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity. Oncogene18,4044–4046 (1999).
  • Ishizaki Y, Ikeda S, Fujimori M et al. Immunohistochemical analysis and mutational analyses of β-catenin, Axin family and APC genes in hepatocellular carcinomas. Int. J. Oncol.24, 1077–1083 (2004).
  • Yao YJ, Ping XL, Zhang H et al. PTEN/MMAC1 mutations in hepatocellular carcinomas. Oncogene18, 3181–3185 (1999).
  • Anzola M, Cuevas N, Lopez-Martinez M, Martinez de Pancorbo M, Burgos JJ. p16INK4A gene alterations are not a prognostic indicator for survival in patients with hepatocellular carcinoma undergoing curative hepatectomy. J. Gastroenterol. Hepatol.19, 397–405 (2004).
  • Qin LX, Tang ZY, Ma ZC et al. P53 immunohistochemical scoring, an independent prognostic marker for patients after hepatocellular carcinoma resection. World J. Gastroenterol.8, 459–463 (2002).
  • Fiorentino M, Altimari A, D’Errico A et al. Acquired expression of p27 is a favorable prognostic indicator in patients with hepatocellular carcinoma. Clin. Cancer Res.6, 3966–3972 (2000).
  • Kawate S, Fukusato T, Ohwada S, Watanuki A, Morishita Y. Amplification of c-myc in hepatocellular carcinoma, correlation with clinicopathologic features, proliferative activity and p53 over expression. Oncology57, 157–163 (1999).
  • Morishita A, Masaki T, Yoshiji H et al. Reduced expression of cell cycle regulator p18INK4C in human hepatocellular carcinoma. Hepatology40, 677–686 (2004).
  • Ikeguchi M, Ueta T, Yamane Y, Hirooka Y, Kaibara N. Inducible nitric oxide synthase and survivin messenger RNA expression in hepatocellular carcinoma. Clin. Cancer Res.8, 3131–3136 (2002).
  • Jeng KS, Sheen IS, Wang YC et al. Prognostic significance of preoperative circulating vascular endothelial growth factor messenger RNA expression in resectable hepatocellular carcinoma, a prospective study. World J. Gastroenterol.10, 643–648 (2004).
  • Endo K, Ueda T, Ueyama J, Ohta T, Terada T. Immunoreactive E-cadherin, a-catenin, β-catenin, and g-catenin proteins in hepatocellular carcinoma, relationships with tumor grade, clinicopathologic parameters, and patients’ survival. Hum. Pathol.31, 558–565 (2000).
  • Kishimoto K, Fujimoto J, Takeuchi M et al. Telomerase activity in hepatocellular carcinoma and adjacent liver tissues. J. Surg. Oncol.69, 119–124 (1998).
  • Kanmura S, Uto H, Kusumoto K et al. Early diagnostic potential for hepatocellular carcinoma using the SELDI Protein Chip system. Hepatology45, 948–956 (2007).
  • Melle C, Ernst G, Scheibner O et al. Identification of specific protein markers in microdissected hepatocellular carcinoma. J. Proteome Res.6, 306–315 (2007).
  • Gobel T, Vorderwulbecke S, Hauck K et al. New multi protein patterns differentiate liver fibrosis stages and hepatocellular carcinoma in chronic hepatitis C serum samples. World J. Gastroenterol.12, 7604–7612 (2006).
  • Blanc JF, Lalanne C, Plomion C et al. Proteomic analysis of differentially expressed proteins in hepatocellular carcinoma developed in patients with chronic viral hepatitis C. Proteomics5, 3778–3789 (2005).
  • Lee IN, Chen CH, Sheu JC et al. Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach. Proteomics6, 2865–2873 (2006).
  • Yang ZF, Ho DW, Lam CT et al. Identification of brain-derived neurotrophic factor as a novel functional protein in hepatocellular carcinoma. Cancer Res.65, 219–225 (2005).
  • Tannapfel A, Anhalt K, Häusermann P et al. Identification of novel proteins associated with hepatocellular carcinomas using protein microarrays. J. Pathol.201, 238–249 (2003).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.