411
Views
44
CrossRef citations to date
0
Altmetric
Review

Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis

, &
Pages 77-90 | Published online: 09 Jan 2014

References

  • Bernhardt J, Weibezahn J, Scharf C, Hecker M. Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res.13, 224–237 (2003).
  • Britton RA, Eichenberger P, Gonzalez-Pastor JE et al. Genome-wide analysis of the stationary-phase s factor (s-H) regulon of Bacillus subtilis. J. Bacteriol.184, 4881–4890 (2002).
  • Cao M, Wang T, Ye R, Helmann JD. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol. Microbiol.45, 1267–1276 (2002).
  • Even S, Burguiere P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I. Global control of cysteine metabolism by CymR in Bacillus subtilis. J. Bacteriol.188, 2184–2197 (2006).
  • Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol.184, 2500–2520 (2002).
  • Helmann JD. The extracytoplasmic function (ECF) s factors. Adv. Microb. Physiol.46, 47–110 (2002).
  • Helmann JD. Deciphering a complex genetic regulatory network: the Bacillus subtilis σW protein and intrinsic resistance to antimicrobial compounds. Sci. Prog.89, 243–266 (2006)
  • Helmann JD, Wu MF, Gaballa A et al. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J. Bacteriol.185, 243–253 (2003).
  • Lee J-W, Helmann JD. Functional specialization within the Fur family of metalloregulators. Biometals20, 485–499 (2007).
  • Molle V, Nakaura Y, Shivers RP et al. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol.185, 1911–1922 (2003).
  • Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol. Microbiol.57, 27–40 (2005).
  • Mostertz J, Scharf C, Hecker M, Homuth G. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology150, 497–512 (2004).
  • Nakano S, Kuster-Schock E, Grossman AD, Zuber P. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc. Natl Acad. Sci. USA100, 13603–13608 (2003).
  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol.183, 5617–5631 (2001).
  • Price CW, Fawcett P, Ceremonie H, Su N, Murphy CK, Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol. Microbiol.41, 757–774 (2001).
  • Ratnayake-Lecamwasam M, Serror P, Wong KW, Sonenshein AL. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev.15, 1093–1103 (2001).
  • Yoshida K, Kobayashi K, Miwa Y et al. Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res.29, 683–692 (2001).
  • Bandow JE, Brötz H, Leichert LI, Labischinski H, Hecker M. Proteomic approach to understanding antibiotic action. Antimicrob. Agents Chemother.47, 948–955 (2003).
  • Bandow JE, Hecker M. Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action. Prog. Drug Res.64, 81–101 (2007).
  • Brötz-Oesterhelt H, Bandow JE, Labischinski H. Bacterial proteomics and its role in antibacterial drug discovery. Mass Spectrom. Rev.24, 549–565 (2005).
  • Pietiainen M, Gardemeister M, Mecklin M, Leskela S, Sarvas M, Kontinen VP. Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type σ factors and two-component signal transduction systems. Microbiology151, 1577–1592 (2005).
  • Butcher BG, Helmann JD. Identification of Bacillus subtilis σW-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by bacilli. Mol. Microbiol.60, 765–782 (2006).
  • Duy NV, Mäder U, Tran NP et al. The proteome and transcriptome analysis of Bacillus subtilis in response to salicylic acid. Proteomics7, 698–710 (2007).
  • Duy NV, Wolf C, Mäder U et al. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis. Proteomics7, 1391–1408 (2007).
  • Tam LT, Eymann C, Albrecht D et al. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ. Microbiol.8, 1408–1427 (2006).
  • Eymann C, Dreisbach A, Albrecht D et al. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics4, 2849–2876 (2004).
  • Wolff S, Otto A, Albrecht D et al. Gel-free and gel-based proteomics in Bacillus subtilis: a comparative study. Mol. Cell. Proteomics5, 1183–1192 (2006).
  • Wolff S, Antelmann H, Albrecht D et al. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.849, 129–140 (2007).
  • Hecker M, Völker U. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics4, 3727–3750 (2004).
  • Van Bogelen RA, Schiller EE, Thomas JD, Neidhardt FC. Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis20, 2149–2159 (1999).
  • Tam LT, Antelmann H, Eymann C, Albrecht D, Bernhardt J, Hecker M. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics6, 4565–4585 (2006).
  • Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J. Bacteriol.186, 1911–1918 (2004).
  • Fernandez S, Ayora S, Alonso JC. Bacillus subtilis homologous recombination: genes and products. Res. Microbiol.151, 481–486 (2000).
  • Au N, Kuester-Schoeck E, Mandava V et al. Genetic composition of the Bacillus subtilis SOS system. J. Bacteriol.187, 7655–7666 (2005).
  • Grundy FJ, Henkin TM. The T box and S box transcription termination control systems. Front. Biosci.8, 20–31 (2003).
  • Henkin TM, Grundy FJ. Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms. Cold Spring Harb. Symp. Quant. Biol.71, 231–237 (2006).
  • Fisher SH. Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol. Microbiol.32, 223–232 (1999).
  • Wray LV Jr, Ferson AE, Rohrer K, Fisher SH. TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc. Natl Acad. Sci. USA,93, 8841–8845 (1996).
  • Yoshida K, Yamaguchi H, Kinehara M, Ohki YH, Nakaura Y, Fujita Y. Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol. Microbiol.49, 157–165 (2003).
  • Babitzke P, Gollnick P. Posttranscription initiation control of tryptophan metabolism in Bacillus subtilis by the trp RNA-binding attenuation protein (TRAP), anti-TRAP, and RNA structure. J. Bacteriol.183, 5795–5802 (2001).
  • Gollnick P, Babitzke P, Antson A, Yanofsky C. Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis. Annu. Rev. Genet.39, 47–68 (2005).
  • Servant P, Le Coq D, Aymerich S. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol. Microbiol.55, 1435–1451 (2005).
  • Antelmann H, Scharf C, Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J. Bacteriol.182, 4478–4490 (2000).
  • Allenby NE, O’Connor N, Pragai Z, Ward AC, Wipat A, Harwood CR. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J. Bacteriol.187, 8063–8080 (2005).
  • Hulett FM. In: Bacillus subtilis and Its Closest Relatives: From Genes To Cells. Sonenshein AL, Hoch JA, Losick R (Eds). ASM Press, DC, USA 193–201 (2002).
  • Freiberg C, Brötz-Oesterhelt H. Functional genomics in antibacterial drug discovery. Drug Discov. Today10, 927–935 (2005).
  • Fischer HP, Freiberg C. Applications of transcriptional profiling in antibiotics discovery and development. Prog. Drug Res.64, 21, 23–47 (2007).
  • Hallsworth JE, Heim S, Timmis KN. Chaotropic solutes cause water stress in Pseudomonas putida. Environ. Microbiol.5, 1270–1280 (2003).
  • Benndorf D, Loffhagen N, Babel W. Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol. Lett.200, 247–252 (2001).
  • de Vries RP, Michelsen B, Poulsen CH et al. The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl. Environ. Microbiol.63, 4638–4644 (1997).
  • Christov LP, Prior BA. Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microbiol. Technol.15, 460–475 (1993).
  • Cavin J-F, Dartois V, Diviès C. Gene cloning, transcriptional analysis, purification, and characterization of phenolic acid decarboxylase from Bacillus subtilis. Appl. Environ. Microbiol.64, 1466–1471 (1998).
  • Gury J, Barthelmebs L, Tran NP, Diviès C, Cavin J-F. Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum. Appl. Environ. Microbiol.70, 2146–2153 (2004).
  • Lupa B, Lyon D, Gibbs MD, Reeves RA, Wiegel J. Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics86, 342–351 (2005).
  • Albrecht U, Lalk M, Langer P. Synthesis and structure–activity relationships of 2-vinylchroman-4-ones as potent antibiotic agents. Bioorg. Med. Chem.13, 1531–1536 (2005).
  • Mascher T, Zimmer SL, Smith TA, Helmann JD. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob. Agents Chemother.48, 2888–2896 (2004).
  • Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD. Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol. Microbiol.50, 1591–604 (2003).
  • Vaillancourt FH, Bolin JT, Eltis LD. The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. Biol.41, 241–267 (2006).
  • Leichert LI, Scharf C, Hecker M. Global characterization of disulfide stress in Bacillus subtilis. J. Bacteriol.185, 1967–1975 (2003).
  • Nakano S, Erwin KN, Ralle M, Zuber P. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol. Microbiol.55, 498–510 (2005).
  • Leelakriangsak M, Kobayashi K, Zuber P. Dual negative control of spx transcription initiation from the P3 promoter by repressors PerR and YodB in Bacillus subtilis. J. Bacteriol.189, 1736–1744 (2007).
  • Leelakriangsak M, Zuber P. Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress. J. Bacteriol.189, 1727–1735 (2007).
  • Leelakriangsak M, Huyen NT, Töwe S et al. Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilis. Mol. Microbiol.67, 1108–1124 (2008).
  • O’Brian PJ. The molecular mechanisms of quinone toxicity. Chem. Biol. Interact.80, 1–41 (1991).
  • Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol.112, 2–16 (1992).
  • Kumagai Y, Koide S, Taguchi K et al. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem. Res. Toxicol.15, 483–489 (2002).
  • Rodriguez CE, Fukuto JM, Taguchi K, Froines J, Cho AK. The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions. Chem. Biol. Interact.155, 97–110 (2005).
  • Kim SO, Merchant K, Nudelman R et al. OxyR: a molecular code for redox-related signaling. Cell109, 383–396 (2002).
  • Lee J-W, Soonsanga S, Helmann JD. A complex thiolate switch regulates the Bacillus subtilis organic peroxide repressor OhrR. Proc. Natl Acad. Sci. USA104, 8743–8748 (2007).
  • Newton GL, Arnold K, Price MS et al. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J. Bacteriol.178, 1990–1995 (1996).
  • Gusarov I, Nudler E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc. Natl Acad. Sci. USA.102, 13855–13860 (2005).
  • Hochgräfe F, Mostertz J, Pöther DC, Becher D, Helmann JD, Hecker M. S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. J. Biol. Chem.282, 25981–25985 (2007).
  • Töwe S, Leelakriangsak M, Kobayashi K et al. The MarR-type repressor MhqR (YkvE) regulates multiple dioxygenases/ glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in Bacillus subtilis. Mol. Microbiol.65, 40–56 (2007).
  • Fischl AS, Kennedy EP. Isolation and properties of acyl carrier protein phosphodiesterase of Escherichia coli. J. Bacteriol.172, 5445–5449 (1990)
  • Ernster L. Dt-diaphorase: a historical review. Chem. Scr.27A, 1–13 (1987).
  • Li R, Bianchet MA, Talalay P, Amzel LM. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc. Natl Acad. Sci. USA92, 8846–8850 (1995).
  • Cavelier G, Amzel LM. Mechanism of NAD(P)H:quinone reductase: Ab initio studies of reduced flavin. Proteins43, 420–432 (2001).
  • Fraaije MW, Mattevi A. Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem. Sci.25, 126–132 (2000).
  • Nishiya Y, Yamamoto Y. Characterization of a NADH:dichloroindophenol oxidoreductase from Bacillus subtilis. Biosci. Biotechnol. Biochem.71, 611–614 (2007).
  • Bryant C, DeLuca M. Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J. Biol Chem.266, 4119–4125 (1991).
  • Nivinskas H, Staskeviciene S, Sarlauskas J, Koder RL, Miller AF, Cenas N. Two-electron reduction of quinones by Enterobacter cloacae NAD(P)H: nitroreductase: quantitative structure-activity relationships. Arch Biochem. Biophys.403, 249–258 (2002).
  • Armstrong RN. Mechanistic diversity in a metalloenzyme superfamily. Biochemistry39, 13625–13632 (2000).
  • Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S. Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem. Soc. Trans.31, 1406–1408 (2003).
  • Ferguson GP, Tötemeyer S, MacLean MJ, Booth IR. Methylglyoxal production in bacteria: suicide or survival? Arch. Microbiol.170, 209–218 (1998).
  • McLaggan D, Rufino H, Jaspars M, Booth IR. Glutathione-dependent conversion of N-ethylmaleimide to the maleamic acid by Escherichia coli: an intracellular detoxification process. Appl. Environ. Microbiol.66, 1393–1399 (2000).
  • Weber H, Engelmann S, Becher D, Hecker M. Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus. Mol. Microbiol.52, 133–140 (2004).
  • Ravichandran V, Seres T, Moriguchi T, Thomas JA, Johnston RB Jr. S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J. Biol. Chem.269, 25010–25015 (1994).
  • Schuppe-Koistinen I, Moldeus P, Bergman T, Cotgreave IA. S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur. J. Biochem.221, 1033–1037 (1994).
  • Grant CM, Quinn KA, Dawes IW. Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol. Cell Biol.19, 2650–2656 (1999).
  • Morby AP, Turner JS, Huckle JW, Robinson NJ. SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. Nucleic Acids Res.21, 921–925 (1993).
  • Smaldone GT, Helmann JD. CsoR regulates the copper efflux operon copZA in Bacillus subtilis. Microbiology153, 4123–4128 (2007).
  • Ren D, Bedzyk LA, Setlow P et al. Differential gene expression to investigate the effect of (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone on Bacillus subtilis. Appl. Environ. Microbiol.70, 4941–4949 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.