292
Views
16
CrossRef citations to date
0
Altmetric
Review

Elucidation of lipoprotein particles structure by proteomic analysis

, , &
Pages 91-104 | Published online: 09 Jan 2014

References

  • Redgrave TG. Chylomicron metabolism. Biochem. Soc. Trans.32(Pt 1), 79–82 (2004).
  • Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res.44(1), 22–32 (2003).
  • Sharp D, Blinderman L, Combs KA et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature365(6441), 65–69 (1993).
  • Cockcroft S. ARF-regulated phospholipase D: a potential role in membrane traffic. Chem. Phys. Lipids,80(1–2), 59–80 (1996).
  • Gibbons GF, Wiggins D, Brown AM, Hebbachi AM. Synthesis and function of hepatic very-low-density lipoprotein. Biochem. Soc. Trans.32(Pt 1), 59–64 (2004).
  • Pease RJ, Leiper JM. Regulation of hepatic apolipoprotein-B-containing lipoprotein secretion. Curr. Opin. Lipidol.7(3), 132–138 (1996).
  • Ardern HA, Benson GM, Suckling KE et al. Apolipoprotein B overproduction by the perfused liver of the St.Thomas’ mixed hyperlipidemic (SMHL) rabbit. J. Lipid Res.40(12), 2234–2243 (1999).
  • Field FJ, Mathur SN. b-sitosterol: esterification by intestinal acylcoenzyme A: cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification. J. Lipid Res.24(4), 409–417 (1983).
  • Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res.96(12), 1221–1232 (2005).
  • Williamson R, Lee D, Hagaman J, Maeda N. Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I. Proc. Natl Acad. Sci. USA89(15), 7134–7138 (1992).
  • Schaefer EJ, Heaton WH, Wetzel MG, Brewer HB Jr. Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis2(1), 16–26 (1982).
  • Weng W, Breslow JL. Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility. Proc. Natl Acad. Sci. USA93(25), 14788–14794 (1996).
  • Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest.116(12), 3090–3100 (2006).
  • McNeish J, Aiello RJ, Guyot D et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc. Natl Acad. Sci. USA97(8), 4245–4250 (2000).
  • Timmins JM, Lee JY, Boudyguina E et al. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J. Clin. Invest.115(5), 1333–1342 (2005).
  • Brunham LR, Kruit JK, Iqbal J et al. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo.J. Clin. Invest.116(4), 1052–1062 (2006).
  • Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arterioscler. Thromb. Vasc. Biol.26(6), 1310–1316 (2006).
  • Kim WS, Rahmanto AS, Kamili A et al. Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein E discs and suppression of amyloid-β peptide generation. J. Biol. Chem.282(5), 2851–2861 (2007).
  • Kuivenhoven JA, Pritchard H, Hill J et al. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J. Lipid Res.38(2), 191–205 (1997).
  • Ng DS. Insight into the role of LCAT from mouse models. Rev. Endocr. Metab. Disord.5(4), 311–318 (2004).
  • Rader DJ, Ikewaki K, Duverger N et al. Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease. J. Clin. Invest.93(1), 321–330 (1994).
  • McLean JW, Tomlinson JE, Kuang WJ et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature330(6144), 132–137 (1987).
  • Lackner C, Cohen JC, Hobbs HH. Molecular definition of the extreme size polymorphism in apolipoprotein(a). Hum. Mol. Genet.2(7), 933–940 (1993).
  • Spence JD. Lipoprotein(a): involved in events, but not burden of atherosclerotic disease? Stroke37(6), 1350–1351 (2006).
  • Catapano AL, Kinnunen PK, Breckenridge WC et al. Lipolysis of ApoC-II deficient very low density lipoproteins: enhancement of lipoprotein lipase action by synthetic fragments of apoC-II. Biochem. Biophys. Res. Commun.89(3), 951–957 (1979).
  • Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med.80(12), 753–769 (2002).
  • Goldstein JL, Brown MS, Anderson RG, Russell DW, Schneider WJ. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol.1, 1–39 (1985).
  • Perret B, Mabile L, Martinez L et al. Hepatic lipase: structure/function relationship, synthesis, and regulation. J. Lipid Res.43(8), 1163–1169 (2002).
  • Krieger M. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI. Annu. Rev. Biochem.68, 523–558 (1999).
  • Klerkx AH, El Harchaoui K, van der Steeg WA et al. Cholesteryl ester transfer protein (CETP) inhibition beyond raising high-density lipoprotein cholesterol levels: pathways by which modulation of CETP activity may alter atherogenesis. Arterioscler. Thromb. Vasc. Biol.26(4), 706–715 (2006).
  • Kozarsky KF, Donahee MH, Rigotti A et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature387(6631), 414–417 (1997).
  • Rigotti A, Trigatti BL, Penman M et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc. Natl Acad. Sci. USA94(23), 12610–12615 (1997).
  • Brundert M, Ewert A, Heeren J et al. Scavenger receptor class B type I mediates the selective uptake of high-density lipoprotein-associated cholesteryl ester by the liver in mice. Arterioscler. Thromb. Vasc. Biol.25(1), 143–148 (2005).
  • Silver DL, Wang N, Xiao X, Tall AR. High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J. Biol. Chem.276(27), 25287–25293 (2001).
  • Agellon LB, Walsh A, Hayek T et al. Reduced high density lipoprotein cholesterol in human cholesteryl ester transfer protein transgenic mice. J. Biol. Chem.266(17), 10796–10801 (1991).
  • Brown ML, Inazu A, Hesler CB et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature342(6248), 448–451 (1989).
  • Inazu A, Brown ML, Hesler CB et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med.323(18), 1234–1238 (1990).
  • Russell DW. Cholesterol biosynthesis and metabolism. Cardiovasc. Drugs Ther.6(2), 103–110 (1992).
  • Corella D, Ordovas JM. Single nucleotide polymorphisms that influence lipid metabolism: interaction with dietary factors. Annu. Rev. Nutr.25, 341–390 (2005).
  • Shore B, Shore V. Heterogeneity in protein subunits of human serum high-density lipoproteins. Biochemistry7(8), 2773–2777 (1968).
  • Gustafson A, Alaupovic P, Furman RH. Studies of the composition and structure of serum lipoproteins: isolation, purification, and characterization of very low density lipoproteins of human serum. Biochemistry4, 596–605 (1965).
  • Emes AV, Latner AL, Rahbani-Nobar M, Tan BH. The separation of plasma lipoproteins using gel electrofocusing and polyacrylamide gradient gel electrophoresis. Clin. Chim. Acta71(2), 293–301 (1976).
  • Rerabek JE. Two-dimensional immunoelectrophrophoretic pattern of low- and very-low-density lipoproteins, with particular reference to Fredrickson’s type III. Clin. Chem.23(2 Pt 1), 186–194 (1977).
  • Borresen AL, Berg K. The apoE polymorphism studied by two-dimensional, high-resolution gel electrophoresis of serum. Clin. Genet.20(6), 438–448 (1981).
  • Zannis VI, Breslow JL. Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification. Biochemistry20(4), 1033–1041 (1981).
  • Rashid KA, Hevi S, Chen Y, Le Caherec F, Chuck SL. A proteomic approach identifies proteins in hepatocytes that bind nascent apolipoprotein B. J. Biol. Chem.277(24), 22010–22017 (2002).
  • Linnik KM, Herscovitz H. Multiple molecular chaperones interact with apolipoprotein B during its maturation. The network of endoplasmic reticulum-resident chaperones (ERp72, GRP94, calreticulin, and BiP) interacts with apolipoprotein b regardless of its lipidation state. J. Biol. Chem.273(33), 21368–21373 (1998).
  • Hevi S, Chuck SL. Ferritins can regulate the secretion of apolipoprotein B. J. Biol. Chem.278(34), 31924–31929 (2003).
  • Seki T, Kunichika T, Watanabe K, Orino K. Apolipoprotein B binds ferritin by hemin-mediated binding: evidence of direct binding of apolipoprotein B and ferritin to hemin. Biometals21(1), 61–69 (2007).
  • Wang H, Gilham D, Lehner R. Proteomic and lipid characterization of apolipoprotein B-free luminal lipid droplets from mouse liver microsomes: implications for very-low density lipoprotein assembly. J. Biol. Chem.282(45), 33218–33226 (2007).
  • Kulinski A, Rustaeus S, Vance JE. Microsomal triacylglycerol transfer protein is required for lumenal accretion of triacylglycerol not associated with ApoB, as well as for ApoB lipidation. J. Biol. Chem.277(35), 31516–31525 (2002).
  • Bondarenko PV, Cockrill SL, Watkins LK, Cruzado ID, Macfarlane RD. Mass spectral study of polymorphism of the apolipoproteins of very low density lipoprotein. J. Lipid Res.40(3), 543–555 (1999).
  • Mancone C, Amicone L, Fimia GM et al. Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF. Proteomics7(1), 143–154 (2007).
  • Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature422(6927), 83–87 (2003).
  • Perez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F et al. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science309(5733), 469–472 (2005).
  • Vaisar T, Pennathur S, Green PS et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest.117(3), 746–756 (2007).
  • Karlsson H, Leanderson P, Tagesson C, Lindahl M. Lipoproteomics I: mapping of proteins in low-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry. Proteomics5(2), 551–565 (2005).
  • Karlsson H, Lindqvist H, Tagesson C, Lindahl M. Characterization of apolipoprotein M isoforms in low-density lipoprotein. J. Proteome Res.5(10), 2685–2690 (2006).
  • Davidsson P, Hulthe J, Fagerberg B et al. A proteomic study of the apolipoproteins in LDL subclasses in patients with the metabolic syndrome and type 2 diabetes. J. Lipid Res.46(9), 1999–2006 (2005).
  • Hallberg C, Haden M, Bergstrom M et al. Lipoprotein fractionation in deuterium oxide gradients: a procedure for evaluation of antioxidant binding and susceptibility to oxidation. J. Lipid Res.35(1), 1–9 (1994).
  • Stahlman M, Davidsson P, Kanmert I et al. M, Davidsson P, Kanmert I Proteomics and lipid composition of lipoproteins isolated at low salt concentrations in D2O/sucrose or in KBr. J. Lipid Res.49(2), 481–490 (2007) .
  • Hurt-Camejo E, Camejo G, Rosengren B et al. Differential uptake of proteoglycan-selected subfractions of low density lipoprotein by human macrophages. J. Lipid Res.31(8), 1387–1398 (1990).
  • Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol.15(5), 551–561 (1995).
  • Onat A, Hergenc G, Sansoy V et al. Apolipoprotein C-III, a strong discriminant of coronary risk in men and a determinant of the metabolic syndrome in both genders. Atherosclerosis168(1), 81–89 (2003).
  • Sacks FM, Alaupovic P, Moye LA et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation102(16), 1886–1892 (2000).
  • Bondarenko PV, Farwig ZN, McNeal CJ, Macfarlane RD. MALDI- and ESI-MS of the HDL apolipoproteins; new isoforms of apoA-I, II. Int. J. Mass Spectrom.219, 671–680 (2002).
  • Farwig ZN, Campbell AV, Macfarlane RD. Analysis of high-density lipoprotein apolipoproteins recovered from specific immobilized pH gradient gel pI domains by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Anal. Chem.75(15), 3823–3830 (2003).
  • Karlsson H, Leanderson P, Tagesson C, Lindahl M. Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry. Proteomics5(5), 1431–1445 (2005).
  • Rezaee F, Casetta B, Levels JH, Speijer D, Meijers JC. Proteomic analysis of high-density lipoprotein. Proteomics6(2), 721–730 (2006).
  • Hortin GL, Shen RF, Martin BM, Remaley AT. Diverse range of small peptides associated with high-density lipoprotein. Biochem. Biophys. Res. Commun.340(3), 909–915 (2006).
  • Levels JH, Bleijlevens B, Rezaee F, Aerts JM, Meijers JC. SELDI-TOF mass spectrometry of high-density lipoprotein. Proteome Sci.5, 15 (2007).
  • Heller M, Schlappritzi E, Stalder D, Nuoffer JM, Haeberli A. Compositional protein analysis of high density lipoproteins in hypercholesterolemia by shotgun LC-MS/MS and probabilistic peptide scoring. Mol. Cell. Proteomics6(6), 1059–1072 (2007).
  • Ishihama Y, Oda Y, Tabata T et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics4(9), 1265–1272 (2005).
  • Wang CS, McConathy WJ, Kloer HU, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J. Clin. Invest.75(2), 384–390 (1985).
  • Miller YI, Smith A, Morgan WT, Shaklai N. Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Biochemistry35(40), 13112–13117 (1996).
  • Berliner JA, Watson AD. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med.353(1), 9–11 (2005).
  • Colles SM, Maxson JM, Carlson SG, Chisolm GM. Oxidized LDL-induced injury and apoptosis in atherosclerosis. Potential roles for oxysterols. Trends Cardiovasc. Med.11(3–4), 131–138 (2001).
  • Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis3(2), 149–159 (1983).
  • Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis6(5), 505–510 (1986).
  • Kang JH, Kim HT, Choi MS et al. Proteome analysis of human monocytic THP-1 cells primed with oxidized low-density lipoproteins. Proteomics6(4), 1261–1273 (2006).
  • Conway JP, Kinter M. Proteomic and transcriptomic analyses of macrophages with an increased resistance to oxidized low density lipoprotein (oxLDL)-induced cytotoxicity generated by chronic exposure to oxLDL. Mol. Cell. Proteomics4(10), 1522–1540 (2005).
  • Kinumi T, Ogawa Y, Kimata J et al. Proteomic characterization of oxidative dysfunction in human umbilical vein endothelial cells (HUVEC) induced by exposure to oxidized LDL. Free Radic. Res.39(12), 1335–1344 (2005).
  • Chen CY, Lee CM, Hsu HC et al. Proteomic approach to study the effects of various oxidatively modified low-density lipoprotein on regulation of protein expression in human umbilical vein endothelial cell. Life Sci.80(26), 2469–2480 (2007).
  • Martinez LO, Jacquet S, Esteve JP et al. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature421(6918), 75–79 (2003).
  • Sukhanov S, Delafontaine P. Protein chip-based microarray profiling of oxidized low density lipoprotein-treated cells. Proteomics5(5), 1274–1280 (2005).
  • Drover VA, Ajmal M, Nassir F et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J. Clin. Invest.115(5), 1290–1297 (2005).
  • Podrez EA, Byzova TV, Febbraio M et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat. Med.13(9), 1086–1095 (2007).
  • van Leuven SI, Hezemans R, Levels JH et al. Enhanced atherogenesis and altered high density lipoprotein in patients with Crohn’s disease. J. Lipid Res.48(12), 2640–2646 (2007).
  • Han X, Gross RW. Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev. Proteomics2(2), 253–264 (2005).
  • Watson AD. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J. Lipid Res.47(10), 2101–2111 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.