226
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants

, , &
Pages 629-648 | Published online: 09 Jan 2014

References

  • Place ES, Evans N, Stevens M. Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457–469 (2009).
  • Langer J, Vacanti JP. Tissue engineering. Science 260(5110), 920–926 (1993).
  • Wald HL, Sarakinos G, Mikos A, Vacanti J, Langer R. Cell seeding in porous transplantation devices. Biomaterials 14, 270–278 (1993).
  • Brem H, Walter K, Langer R. Polymers as controlled drug delivery devices for the treatment of malignant brain tumors. Eur. J. Pharm. Biopharm. 39, 2–7 (1993).
  • Tabata Y, Langer R. Polyanhydride microspheres that display near-constant release of water soluble drugs. Pharm. Res. 10, 391–399 (1993).
  • Tabata Y, Gutta S, Langer R. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm. Res. 10, 487–496 (1993).
  • Hutmacher D. Scaffold design and manufacturing technologies for engineering tissues – state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12(1), 107–124 (2001).
  • Mikos A, Sarakinos G, Leite S, Vacanti J, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14, 323–330 (1993).
  • Hinderer S, Schenke-Layland K. Thracheal tissue engineering: Building on a strong foundation. Expert Rev. Med. Devices 10(1), 33–35 (2013).
  • Ovsianikov A, Mironov V, Stampfl J, Liska R. Engineering 3D cell-culture matrices: multiphoton processing technologies for biological & tissue engineering applications. Expert Rev. Med. Devices 9(6), 613–633 (2012).
  • Thomas WE, Discher DE, Shastri VP. Mechanical regulation of cells by materials and tissues. MRS Bulletin 35(8), 578–583 (2010).
  • Chen WL, Likhitpanichkul M, Ho A, Simmons CA. Integration of statistical modeling and high-content microscopy to systematically investigate cell-substrate interactions. Biomaterials 31(9), 2489–2497 (2010).
  • Buxboim A, Discher DE. Stem cells feel the difference. Nat. Methods 7(9), 695–697 (2010).
  • Doyle AD, Wang FW, Matsumoto K, Yamada K. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184(4), 481–490 (2009).
  • Hosseinkhani H, Hong PD, Yu DS et al. Development of 3D in vitro platform technology to engineer mesenchymal stem cells. Int. J. Nanomedicine 7, 3035–3043 (2012).
  • Hosseinkhani H, Hosseinkhani M, Hattori S, Matsuoka R, Kawaguchi N. Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J. Biomed. Mater. Res. A 94(1), 1–8 (2010).
  • Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Bone regeneration on a collagen sponge self-assembled peptide-amphiphile nanofiber hybrid scaffold. Tissue Eng. 13(1), 11–19 (2007).
  • Boccaccini AR, Kneser U, Arkudas A. Scaffolds for vascularized bone regeneration: advances and challenges. Expert Rev. Med. Devices 9(5), 457–460 (2012).
  • Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H, Tabata Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials 27(34), 5836–5844 (2006).
  • Hosseinkhani H, Hosseinkhani M, Kobayashi H. Design of tissue-engineered nanoscaffold through self-assembly of peptide amphiphile. J. Bioact. Compat. Polym. 21(4), 277–296 (2005).
  • Lindström S, Iles A, Persson J et al. Nanoporous titania coating of microwell chips for stem cell culture and analysis. J. Biomech. Sci. Eng. 5(3), 272–279 (2010).
  • Mandelbrot B. The Fractal Geometry of Nature. W.H. Freeman, San Francisco, USA (1982).
  • Falconer K. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons Ltd., NY, USA (2003).
  • Reljin IS, Reljin BD. Fractal geometry and multifractals in analyzing and processing medical data and images. Arch. Oncol. 10(4), 283–293 (2002).
  • Janjarasjitt S, Loparo KA. Wavelet-based fractal analysis of the epileptic EEG signal. Int. Signal Process. Commun. Sys. 127–130 (2009).
  • Sekine M, Tamura T, Akay M, Fujimoto T, Togawa T, Fukui Y. Discrimination of walking patterns using wavelet-based fractal analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 10(3), 188–196 (2002).
  • Lopes R, Betrouni N. Fractal and multifractal analysis: A review. Med. Image Anal. 13, 634–649 (2009).
  • Ifterkharuddin KM, Jia W, Marsh R. A fractal analysis approach to identification of tumor in brain MR images. Proceedings of the 22nd Annual International Conference of the IEEE. 4, 3064–3066 (2000).
  • Przystalski K, Popik M, Ogorzalek M, Nowak L. Improved melanoma diagnosis support system based on fractal analysis of images. Proceedings of the 10th International Symposium on Operations Research and its Applications 203–211 (2011).
  • Baish JW, Jain RK. Fractals and cancer. Cancer Res. 60, 3683–3688 (2000).
  • Araujo RP, Mc Elwain LS. A history of the study of solid tumour growth: The contribution of mathematical modeling. Bull. Math. Biol. 66, 1039–1091 (2004).
  • Mombach JCM, Lemke N, Bodmann BEJ, Idiart MAP. A mean-field theory of cellular growth. Europhys. Lett. 59, 923–928 (2002).
  • D’Onofrio A. Fractal growth of tumors and other cellular populations: Linking the mechanistic to the phenomenological modeling and vice versa. Chaos Solitons Fractals 41(2), 875–880 (2009).
  • Alarcón T, Byrne HM, Maini PK. A multiple scale model for tumor growth. Multiscale Model. Simul. 3(2), 440–475 (2005).
  • Preziosi L, Tosin A. Multiphase modeling of tumour growth and extracellular matrix interaction: Mathematical tools and applications. J. Math. Biol. 58(4–5), 625–656 (2009).
  • Prusinkiewicz P, Lindenmayer A. The algorithmic beauty of plants. Springer Verlag, 1990, reprinted in 1996, electronic version (2004).
  • Craciunescu O, Das SK, Dewhirst MW. Three-dimensional microvascular networks fractal structure: Potential for tissue characterization? Adv. Heat Mass Trans. Biotechnol. 363, 9–13 (1999).
  • Herman AB, Savage VM, West GB. A quantitative theory of solid tumor growth, metabolic rate and vascularization. PLoS ONE 6(9), e22793 (2011).
  • Masters BR. Fractal analysis of the vascular tree in the human retina. Annu. Rev. Biomed. Eng. 6, 427–452 (2004).
  • Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1), 1–8 (1997).
  • Autumn K. Properties, principles and parameters of the Gecko adhesive system. In: Biological Adhesives. Springer Verlag, Berlin, Heidelberg, 1–38 (2006).
  • Díaz Lantada A, Lafont Morgado P, Echávarri Otero J et al. Biomimetic computer-aided design and manufacture of complex biological surfaces. Biodevices 286–290 (2012).
  • Roach P, Shirtcliffe RJ, Newton MI. Progress in super-hydrophobic surface development. Soft Matter 4, 224–240 (2008).
  • Salgado CL, Oliveira MB, Mano JF. Combinatorial cell-3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates. OMICS 4(3), 318–327 (2012).
  • He JH, Liu Y, Xu L, Yu JY. Micro sphere with nanoporosity by electrospinning. Chaos. Solitons Fractals 32(3), 1096–1100 (2007).
  • He JH, Wan YQ, Xu L. Nano-effects, quantum-like properties in electrospun nanofibers. Chaos. Solitons Fractals 33(1), 26–37 (2007).
  • Pareja B, Díaz Lantada A (advisor). Síntesis, caracterización y modelado de estructuras poliméricas porosas para ingeniería de tejidos. Final Degree Thesis, Universidad Politécnica de Madrid (2012).
  • Fernández Cid P, Wu J, Díaz Lantada A (Advisors). Mechanical properties of porous polymers for tissue engineering. Final Degree Thesis, University of Durham, Universidad Politécnica de Madrid (2011).
  • Francesco G, Tirinato L, Battista E et al. Cells preferentially grow on rough substrates. Biomaterials 31(28), 7205–7212 (2010).
  • Kumar G, Waters MS, Farooque TM, Young MF, Simon CG Jr. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials 33(16), 4022–4030 (2012).
  • Curtis A, Wilkinson C. Topographical control of cells. Biomaterials 18, 1573–1583 (1997).
  • Díaz Lantada A, Lafont Morgado P. Rapid prototyping for biomedical engineering: Current capabilities and challenges. Annu. Rev. Biomed. Eng. 14, 73–96 (2012).
  • Chen W, Weng S, Zhang F et al. Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano doi:10.1021/nn304719q (2012) ( Epub ahead of print).
  • Kelly S, Regan EM, Uney JB et al. Patterned growth of neuronal cells on modified diamond-like carbon substrates. Biomaterials 29(17), 2573–2580 (2008).
  • Ponche A, Bigerelle M, Anselme K. Relative influence of surface topography and surface chemistry on ell response to bone implant materials. Part 1: Physico-chemical effects. Proc. Inst. Mech. Eng. 224(12), 1471–1486 (2010).
  • Anselme K, Ponche A, Bigerelle M. Relative influence of surface topography and surface chemistry on ell response to bone implant materials. Part 2: Biological aspects. Proc. Inst. Mech. Eng. 224(12), 1487–1507 (2010).
  • Lourenço BN, Marchioli G, Song W et al. Wettability influences cell behavior on superhydrophobic surfaces with different topographies. Biointerphases 7(1–4), 1–11 (2012).
  • Barber R, Emerson DR. Optimal design of microfluidic networks using biologically inspired principles. Microfluid. nanofluid. 4, 179–191 (2008).
  • Yang LJ, Chen BH. Blood vessels by fractal gelatin. 7th IEEE International Conference on Nano/micro Engineering and Molecular Systems 175–178, (2012).
  • Díaz Lantada A, Endrino J, Sánchez-Vaquero V, Mosquera AA, Lafont Morgado P, García Ruíz JP. Tissue engineering using novel DLC-coated rapid prototyped scaffolds. Plasma Processes and Polymers 9(1), 98–107 (2011).
  • Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63(4–5), 300–311 (2011).
  • Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds for liver tissue engineering. Expert Rev. Med. Devices 3(1), 21–27 (2006).
  • Bouten CVJ, Driessen-Mol A, Baaijens FPT. In situ heart valve tissue engineering: Simple devices, smart materials, complex knowledge. Expert Rev. Med. Devices 9(5), 453–455 (2012).
  • Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication technology for vascularized tissue engineering. Biomed. Microdevices 4(3), 165–175 (2002).
  • Kaazempur-Mofrad MR, Borenstein JT, Hartman LM et al. Vascularized tissue engineering of vital organs: Design, modeling and functional testing. Proceedings of the IEEE 29th Annual Bioengineering Conference 205–206 (2003).
  • Gauvin R, Guillemette M, Dokmeci M, Khademhosseini A. Application of microtechnologies for the vascularization of engineered tissues. Vasc. Cell 3(24), 1–7 (2011).
  • Bianchi F, Rosi M, Vozzi G, Emanueli C, Madeddu P, Ahluwalia A. Microfabrication of fractal polymeric structures for capillary morphogenesis: Applications in therapeutic angiogenesis and in the engineering of vascularized tissue. J. Biomed. Mater. Res., Part B Appl. Biomater. 81B(2), 462–468 (2007).
  • Xu C, Huang Y, Markwald RR. Vertical and horizontal fabrication of alginate-based vascular-like constructs using inkjetting. Proceedings of the 23rd International Solid Freeform Fabrication Symposium, paper 12, 1–9 (2012).
  • Lewis JA. Direct ink writing of 3D functional materials. Adv. Funct. Mat. 16, 2193–2204 (2006).
  • Emerson DR, Cieslicki K, Gu X, Barber RW. Biomimetic design of microfluidic manifolds based on a generalized Murray’s law. Lab Chip 6, 447–454 (2006).
  • Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 1(2), 211–222 (2005).
  • Sammons RL, Lumbikanonda N, Gross M, Cantzler P. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behavior in an explants model of osseointegration. Clin. Oral Implants Res. 16(6), 657–666 (2005).
  • Scwartz FH, Novaes AB, De Castro LM, Rosa AL, De Oliveira PT. In vitro osteogenesis on a microstructured titanium surface with additional submicron-scale topography. Clin. Oral Implants Res. 18(3), 333–344 (2007).
  • Degidi M, Iezzi G, Piattelli A, Perrotti V. Implant surfaces and fractals. Identity 1(12), 7–11 (2012).
  • Longoni S, Sartori M. Fractal geometry of nature (bone) may inspire medical devices shape. Nature Precedings 1–22 (2010).
  • Díaz Lantada A, Endrino JL, Mosquera AA, Lafont P. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. J. Phys. Conf. Ser. 252(1), 012003 (2010).
  • Sutradhar A, Paulino GH, Miller MJ, Nguyen TH. Topological optimization for designing patient-specific large craniofacial segmental bone replacements. PNAS 107(30), 13222–13227 (2010).
  • Soo SC, Yu KM. Rapid prototyping for self-similarity design. J. Mater. Proc. Tech. 139, 219–225 (2003).
  • Lipson H. Frontiers in additive manufacturing, the shape of things to come. Bridge 42(1), 5–12 (2012).
  • Boccaccio A, Ballini A, Pappaleterre C, Tullo D, Cantore S, Desiate A. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int. J. Biol. Sci. 7(1), 112–132 (2011).
  • Lacroix D, Chateau A, Ginebra MP, Planell JA. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27, 5326–5334 (2006).
  • Alberich-Bayarri A, Salmerón Sánchez M, Pérez MA, Moratal D. Microfinite element modelling for evaluating polymer scaffolds architecture and their mechanical properties from microcomputed tomography. In: Finite element analysis. Moratal D (Ed.). InTech, Spain (2010).
  • Tasaki S, Maeda C, Kirihara S. Biofluid flow simulation of tissue engineering scaffolds with dendrite structures. In: Advances in Bioceramics and Porous Ceramics V. Narayan R, Colombo P, Halbig M, Mathur S (Eds). John Wiley & Sons, NJ, USA (2012).
  • Sanz Herrera JA, García Aznar JM & Doblaré Castellano M (Advisors). Multiscale simulation of bone regeneration in tissue engineering processes. PhD Thesis, University of Zaragoza (2008).
  • Kang HS, Hollister SJ (Advisor). Hierarchical design and simulation of tissue engineering scaffold mechanical, mass transport, and degradation properties. PhD Thesis, The University of Michigan (2010).
  • Ko YG, Chen G (Advisor). Development of polymeric porous scaffolds using an ice particulate template for tissue engineering. PhD Thesis, University of Cincinnati (2010).
  • Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev. Med. Devices 3(6), 835–851 (2006).
  • Wong KHK, Chan JM, Kamm RD, Tien J. Microfluidic models of vascular function. Annu. Rev. Biomed. Eng. 14, 205–230 (2012).
  • Gad-el-Hak M. The MEMS Handbook. CRC Press, USA (2002).
  • Xiang N, Yi H, Chen K, Wang S, Ni Z. Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories. J. Micromech. Microeng. 23, 025016 (2013).
  • Zhang AP, Qu X, Soman P et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereo-lithography. Adv. Mat. 24(31), 4266–4270 (2012).
  • Endrino JL, Sánchez-López JC, Escobar Galindo R, Horwat D, Anders A. Beneficial silver: antibacterial nanocomposite Ag-DLC coating to reduce osteolysis of orthopaedic implants. J. Physic. Conf. Ser. 252, 012005 (2010).
  • Endrino JL, Anders A, Albella JM, Horton JA, Horton TH, Ayyalasomayajula PR, Allen M. Antibacterial efficacy of advanced silver-amorphous carbon coatings deposited using the pulsed dual cathodic arc technique. J. Physic. Conf. Ser. 252, 012012 (2010).
  • Schaedler TA, Jacobsen AJ, Torrents A et al. Ultralight metallic microlattices. Science 334(6058), 962–965 (2011).
  • Mironov V, Trusk T, Kasyanov V et al. A 21st Century manufacturing paradigm. Biofabrication 1(2), 022001 (2009).
  • Kanani C, Gaudette GR (Advisor). Cell printing: A novel method to seed cells onto biological scaffolds. PhD Thesis, Worcester Polytechnic Institute (2012).
  • Jakab K, Norotte C, Marga F et al. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2, 022001 (2010).
  • Ovsianikov A, Gruene M, Pflaum M et al. Laser printing of cells into 3D scaffolds. Biofabrication 2, 014104 (2010).
  • Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold free vascular tissue engineering using bioprinting. Biomaterials 30, 5910–5917 (2009).
  • Borchers K, Bierwisch C, Cousteau J et al. New cytocompatible materials for additive manufacturing of bio-inspired blood vessels systems. Inter. Confer. Biofabrication (2012).
  • Hoch E, Schuh C, Hirth T, Tovar G, Borchers K. Stiff gelatins can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. J. Mater. Sci. 11, 2607–2617 (2012).
  • Meyer W, Engelhardt S, Novosel E, Elling B, Wegener M, Krüger H. Soft polymers for building up small and smallest blood supplying systems by stereolithography. J. Func. Biomater. 3, 257–268 (2012).
  • Lindstrom ME, Meldrum DR. Life-on-a-chip. Nat. Rev. Microbiol. 1, 158–164 (2003).
  • Huh G, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21(12), 745–754 (2012).
  • Hoganson DM, Anderson JL, Weinberg EF et al. Branched vascular network architecture: A new approach to lung assist device technology. J. Thorac. Cardiovasc. Surg. 140(5), 990–995 (2010).
  • Hsu WM, Canarro A, Kulig KM et al. Liver-assist device with a microfluidics-based vascular bed in an animal model. Ann. Surg. 252(2), 351–357 (2010).
  • Bejan A, Lorente S. The constructural law of design and evolution in nature. Philos. Trans. R. Soc. B. Biol. Sci. 365, 1335–1347 (2010).

Patents

  • Robertson PD, Haggard JS. Manufactured fiber comprising engineered geometric feature forming non-Euclidean geometry, useful e.g. in engineering tissue, biological materials, bio-medical applications, to form bandage, medical clothing and for growing bone fractal. US2011076771-A1 (2011).
  • Díaz Lantada A, Lafont Morgado P et al. Soporte tridimensional para producción artificial de órganos y otras estructuras del organismo humano y método de obtención del mismo. P201030956 (2010).
  • Díaz Lantada A, Lafont Morgado P et al. Substrato cuasibidimensional para crecimiento de células y tejidos y método de obtención del mismo. P201030957 (2010).
  • Longoni S, Sartori M, Vitulli D. A method for designing and/or obtaining selecting a device and/or material for implanting in tissues of the human or animal body and a device or material obtained thereby. WO2009141435 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.