748
Views
66
CrossRef citations to date
0
Altmetric
Reviews

The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas

, , , , , & show all
Pages 661-673 | Published online: 09 Jan 2014

References

  • Pachler C, Plank J, Weinhandl H Tight glycaemic control by an automated algorithm with time-variant sampling in medical ICU patients. Intensive Care Med. 34(7), 1224–1230 (2008).
  • Elleri D, Allen JM, Biagioni M Evaluation of a portable ambulatory prototype for automated overnight closed-loop insulin delivery in young people with type 1 diabetes. Pediatr. Diab. 13(6), 449–453 (2012).
  • Atlas E, Nimri R, Miller S, Grunberg EA, Phillip M. MD-logic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diab. Care 33(5), 1072–1076 (2010).
  • International Diabetes Federation. IDF Diabetes Atlas (5th edition). Brussels, Belgium (2011)
  • Clemens AH, Chang PH, Myers RW. The development of Biostator, a Glucose Controlled Insulin Infusion System (GCIIS). Horm. Metab. Res. (Suppl. 7), 23–33 (1977).
  • American Diabetes Association. Standards of medical care in diabetes – 2011. Diab. Care 34(Suppl. 1), S11–S61 (2011).
  • Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F. Technologies for continuous glucose monitoring: current problems and future promises. J. Diab. Sci.Technol. 4(6), 1540–1562 (2010).
  • Clinical and Laboratory Standards Institute. Performance Metrics for Continuous Intersitital Glucose Monitoring; Approved Guideline. Clinical and Laboratory Standards Institute document POCT05-A. Wayne: Clinical and Laboratory Standards Institute; (2008).
  • Cengiz E, Tamborlane WV. A tale of two compartments: interstitial versus blood glucose monitoring. Diab. Technol. Ther. 11(Suppl. 1), S11–S16 (2009).
  • Aussedat B, Dupire-Angel M, Gifford R, Klein JC, Wilson GS, Reach G. Interstitial glucose concentration and glycemia: implications for continuous subcutaneous glucose monitoring. Am. J. Physiol. Endocrinol. Metab. 278(4), E716–E728 (2000).
  • Lonnroth P, Jansson PA, Smith U. A microdialysis method allowing characterization of intercellular water space in humans. Am. J. Physiol. 253(2 Pt 1), E228–E231 (1987).
  • Rebrin K, Steil GM, van Antwerp WP, Mastrototaro JJ. Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. Am. J. Physiol. 277(3 Pt 1), E561–E571 (1999).
  • Baek YH, Jin HY, Lee KA The Correlation and accuracy of glucose levels between interstitial fluid and venous plasma by continuous glucose monitoring system. Korean Diab. J. 34(6), 350–358 (2010).
  • Kulcu E, Tamada JA, Reach G, Potts RO, Lesho MJ. Physiological differences between interstitial glucose and blood glucose measured in human subjects. Diab. Care 26(8), 2405–2409 (2003).
  • Beier B, Musick K, Matsumoto A, Panitch A, Nauman E, Irazoqui P. Toward a continuous intravascular glucose monitoring system. Sensors 11(1), 409–424 (2011).
  • Skjaervold NK, Solligard E, Hjelme DR, Aadahl P. Continuous measurement of blood glucose: validation of a new intravascular sensor. Anesthesiology 114(1), 120–125 (2011).
  • Aye T, Block J, Buckingham B. Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems. Endocrinol. Metab. Clin. North America 39(3), 609–624 (2010).
  • Keenan DB, Mastrototaro JJ, Voskanyan G, Steil GM. Delays in minimally invasive continuous glucose monitoring devices: a review of current technology. J. Diab. Sci. Technol. 3(5), 1207–1214 (2009).
  • Rebrin K, Sheppard NF Jr, Steil GM. Use of subcutaneous interstitial fluid glucose to estimate blood glucose: revisiting delay and sensor offset. J. Diab. Sci. Technol. 4(5), 1087–1098 (2010).
  • Mastrototaro J. The MiniMed Continuous Glucose Monitoring System (CGMS). J. Pediatr. Endocrinol. Metab. 12(Suppl. 3), 751–758 (1999).
  • Glucose Monitoring Study Group. Continuous glucose monitoring by means of the microdialysis technique: underlying fundamental aspects. Diab. Technol. Ther. 5(4), 545–561 (2003).
  • Banting FG, Campbell WR, Fletcher AA. Further clinical experience with insulin (pancreatic extracts) in the treatment of diabetes mellitus. Br. Med. J. 1(3236), 8–12 (1923).
  • Gilchrist JA, Best CH, Banting FG. Observations with insulin on department of soldiers’ civil Re-establishment diabetics. Canadian Med. Assoc. J. 13(8), 565–572 (1923).
  • Renard E. Insulin delivery route for the artificial pancreas: subcutaneous, intraperitoneal, or intravenous? Pros and cons. J. Diab. Sci. Technol. 2(4), 735–738 (2008).
  • Yasini S, Naghibi-Sistani MB, Karimpour A. Agent-based Simulation for Blood Glucose Control in Diabetic Patients. World Acad. Sci. Eng. Technol. 57(33), 11 (2009).
  • McMahon GT, Arky RA. Inhaled insulin for diabetes mellitus. N. Engl. J. Med. 356(5), 497–502 (2007).
  • Farmer TG, Jr., Edgar TF, Peppas NA. The future of open- and closed-loop insulin delivery systems. J. Pharm. Pharmacol. 60(1), 1–13 (2008).
  • Kapitza C, Zijlstra E, Heinemann L, Castelli MC, Riley G, Heise T. Oral insulin: a comparison with subcutaneous regular human insulin in patients with type 2 diabetes. Diab. Care 33(6), 1288–1290 (2010).
  • Najafzadeh H, Kooshapur H, Kianidehkordi F. Evaluation of an oral insulin formulation in normal and diabetic rats. Indian J. Pharm. 44(1), 103–105 (2012).
  • Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 329(14), 977–986 (1993).
  • Kumareswaran K, Evans ML, Hovorka R. Closed-loop insulin delivery: towards improved diabetes care. Discov. Med. 13(69), 159–170 (2012).
  • Thorens B. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diab. Obesity Metab. 13(Suppl. 1), 82–88 (2011).
  • Thorens B. Sensing of glucose in the brain. Handb. Exp. Pharmacol. (209), 277–294 (2012).
  • Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV. Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diab. Care 31(5), 934–939 (2008).
  • Renard E, Place J, Cantwell M, Chevassus H, Palerm CC. Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery: feasibility study testing a new model for the artificial pancreas. Diab. Care 33(1), 121–127 (2010).
  • Dassau E, Bequette BW, Buckingham BA, Doyle FJ 3rd. Detection of a meal using continuous glucose monitoring: implications for an artificial beta-cell. Diab. Care 31(2), 295–300 (2008).
  • Lee H, Buckingham BA, Wilson DM, Bequette BW. A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator. J. Diab. Sci. Technol. 3(5), 1082–1090 (2009).
  • Panteleon AE, Loutseiko M, Steil GM, Rebrin K. Evaluation of the effect of gain on the meal response of an automated closed-loop insulin delivery system. Diabetes 55(7), 1995–2000 (2006).
  • Steil GM, Palerm CC, Kurtz N The effect of insulin feedback on closed loop glucose control. J. Clin. Endocrinol. Metab. 96(5), 1402–1408 (2011).
  • Wintergerst KA, Deiss D, Buckingham B Glucose control in pediatric intensive care unit patients using an insulin-glucose algorithm. Diab. Technol. Ther. 9(3), 211–222 (2007).
  • Acikgoz US, Diwekar UM. Blood glucose regulation with stochastic optimal control for insulin-dependent diabetic patients. Chem. Eng. Sci. 65(3), 1227–1236 (2010).
  • Chee F, Savkin AV, Fernando TL, Nahavandi S. Optimal H infinity insulin injection control for blood glucose regulation in diabetic patients. IEEE Trans. Biomed. Eng. 52(10), 1625–1631 (2005).
  • Bruttomesso D, Farret A, Costa S Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: preliminary studies in Padova and Montpellier. J. Diab. Sci. Technol. 3(5), 1014–1021 (2009).
  • Clarke WL, Anderson S, Breton M, Patek S, Kashmer L, Kovatchev B. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: the Virginia experience. J. Diab. Sci. Technol. 3(5), 1031–1038 (2009).
  • Elleri D, Allen JM, Nodale M Automated overnight closed-loop glucose control in young children with type 1 diabetes. Diab. Technol. Ther. 13(4), 419–424 (2011).
  • Ellingsen C, Dassau E, Zisser H Safety constraints in an artificial pancreatic beta cell: an implementation of model predictive control with insulin on board. J. Diab. Sci. Technol. 3(3), 536–544 (2009).
  • Gillis R, Palerm CC, Zisser H, Jovanovic L, Seborg DE, Doyle FJ. Glucose estimation and prediction through meal responses using ambulatory subject data for advisory mode model predictive control. J. Diab. Sci. Technol. 1(6), 825–833 (2007).
  • Grosman B, Dassau E, Zisser HC, Jovanovic L, Doyle FJ 3rd. Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events. J. Diab. Sci. Technol. 4(4), 961–975 (2010).
  • Hovorka R, Canonico V, Chassin LJ Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25(4), 905–920 (2004).
  • Kan S, Onodera H, Furutani E Novel control system for blood glucose using a model predictive method. ASAIOJ. 46(6), 657–662 (2000).
  • Magni L, Forgione M, Toffanin C Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial. J. Diab. Sci. Technol. 3(5), 1091–1098 (2009).
  • Murphy HR, Elleri D, Allen JM Closed-loop insulin delivery during pregnancy complicated by type 1 diabetes. Diab. Care 34(2), 406–411 (2011).
  • Schaller HC, Schaupp L, Bodenlenz M On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes. Diab. Med. 23(1), 90–93 (2006).
  • Schlotthauer G, Gamero LG, Torres ME, Nicolini GA. Modeling, identification and nonlinear model predictive control of type I diabetic patient. Med. Eng. Phys. 28(3), 240–250 (2006).
  • Wang Y, Dassau E, Doyle FJ 3rd. Closed-loop control of artificial pancreatic Beta-cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE trans. Biomed. Eng. 57(2), 211–219 (2010).
  • Wilinska ME, Budiman ES, Taub MB Overnight closed-loop insulin delivery with model predictive control: assessment of hypoglycemia and hyperglycemia risk using simulation studies. J. Diab. Sci. Technol. 3(5), 1109–1120 (2009).
  • Elleri D, Dunger DB, Hovorka R. Closed-loop insulin delivery for treatment of type 1 diabetes. BMC Med. 9, 120 (2011).
  • Hovorka R, Kumareswaran K, Harris J Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. BMJ 342, d1855 (2011).
  • Nimri R, Atlas E, Ajzensztejn M, Miller S, Oron T, Phillip M. Feasibility study of automated overnight closed-loop glucose control under MD-logic artificial pancreas in patients with type 1 diabetes: the DREAM Project. Diab. Technol. Ther. 14(8), 728–735 (2012).
  • Hovorka R, Kremen J, Blaha J Blood glucose control by a model predictive control algorithm with variable sampling rate versus a routine glucose management protocol in cardiac surgery patients: a randomized controlled trial. J. Clin. Endocrinol. Metab. 92(8), 2960–2964 (2007).
  • Egi M, Finfer S, Bellomo R. Glycemic control in the ICU. Chest 140(1), 212–220 (2011).
  • Kavanagh BP. Glucose in the ICU - evidence, guidelines, and outcomes. N. Engl. J. Med. 367(13), 1259–1260 (2012).
  • Cordingley JJ, Vlasselaers D, Dormand NC Intensive insulin therapy: enhanced Model Predictive Control algorithm versus standard care. Intensive Care Med. 35(1), 123–128 (2009).
  • Blaha J, Kopecky P, Matias M Comparison of three protocols for tight glycemic control in cardiac surgery patients. Diab. Care 32(5), 757–761 (2009).
  • Breton M, Farret A, Bruttomesso D Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes 61(9), 2230–2237 (2012).
  • Cobelli C, Renard E, Kovatchev BP Pilot studies of wearable outpatient artificial pancreas in type 1 diabetes. Diab. Care 35(9), e65–e67 (2012).
  • Grayson BE, Seeley RJ, Sandoval DA. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nat. Rev. Neurosci. 14(1), 24–37 (2013).
  • Teixeira RE, Malin S. The next generation of artificial pancreas control algorithms. J. Diab. Sci. Technol. 2(1), 105–112 (2008).
  • D’Alessio DA, Vahl TP. Glucagon-like peptide 1: evolution of an incretin into a treatment for diabetes. Am. J. Physiol. Endocrinol. Metab. 286(6), E882–E890 (2004).
  • Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68(6), 1456–1467 (1981).
  • Roy A, Parker RS. Mixed meal modeling and disturbance rejection in type I diabetic patients. Conf. Proc. 1, 323–326 (2006).
  • Steil GM, Panteleon AE, Rebrin K. Closed-loop insulin delivery-the path to physiological glucose control. Adv. Drug Deliv. Rev. 56(2), 125–144 (2004).
  • Luzi L, DeFronzo RA. Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans. Am. J. Physiol. 257(2 Pt 1), E241–E246 (1989).
  • Hartman I. Insulin analogs: impact on treatment success, satisfaction, quality of life, and adherence. Clin. Med. Res. 6(2), 54–67 (2008).
  • Castle JR, Engle JM, El Youssef J Novel use of glucagon in a closed-loop system for prevention of hypoglycemia in type 1 diabetes. Diab. Care 33(6), 1282–1287 (2010).
  • El-Khatib FH, Russell SJ, Nathan DM, Sutherlin RG, Damiano ER. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci. Trans. Med. 2(27), 27ra27 (2010).
  • Adeghate E, Kalasz H. Amylin analogues in the treatment of diabetes mellitus: medicinal chemistry and structural basis of its function. Open Med. Chem. J. 5(Suppl. 2), 78–81 (2011).
  • Schmitz O, Brock B, Rungby J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes 53(Suppl. 3), S233–S238 (2004).
  • Heptulla RA, Rodriguez LM, Mason KJ, Haymond MW. Twenty-four-hour simultaneous subcutaneous Basal-bolus administration of insulin and amylin in adolescents with type 1 diabetes decreases postprandial hyperglycemia. J. Clin. Endocrinol. Metab. 94(5), 1608–1611 (2009).
  • Weinzimer SA, Sherr JL, Cengiz E Effect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diab. Care 35(10), 1994–1999 (2012).
  • Macconell L, Brown C, Gurney K, Han J. Safety and tolerability of exenatide twice daily in patients with type 2 diabetes: integrated analysis of 5594 patients from 19 placebo-controlled and comparator-controlled clinical trials. Diab. Metab. Syndr. Obes. 5, 29–41 (2012).
  • Nikfar S, Abdollahi M, Salari P. The efficacy and tolerability of exenatide in comparison to placebo; a systematic review and meta-analysis of randomized clinical trials. J. Pharm. Pharm. Sci. 15(1), 1–30 (2012).
  • US Food and Drug Administration (FDA) - Center for Drug Evaluation and Research. Reports of altered kidney function in patients using exenatide (marketed as Byetta). Information for Healthcare Professionals. Marketed as Byetta, 1, (2009). www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm188656.htm (Accessed 1 August 2013).
  • Reichel K, Dickens L, Tellmann A, Bothe MK, Westphal M, Faisal AA. Machine Learning for Closed-loop Insulin Delivery: Model & in-vivo Studies. Conference: Bioengineering Oxford, UK, 12, (2012).
  • Dazzi D, Taddei F, Gavarini A, Uggeri E, Negro R, Pezzarossa A. The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method. J. Diab. Complications 15(2), 80–87 (2001).
  • El-Jabali AK. Neural network modeling and control of type 1 diabetes mellitus. Bioprocess Biosys. Eng. 27(2), 75–79 (2005).
  • Gogou G, Maglaveras N, Ambrosiadou BV, Goulis D, Pappas C. A neural network approach in diabetes management by insulin administration. J. Med. Syst. 25(2), 119–131 (2001).
  • Mougiakakou SG, Nikita KS. A neural network approach for insulin regime and dose adjustment in type 1 diabetes. Diab. Technol. Ther. 2(3), 381–389 (2000).
  • Otto E, Semotok C, Andrysek J, Basir O. An intelligent diabetes software prototype: predicting blood glucose levels and recommending regimen changes. Diab. Technol. Ther. 2(4), 569–576 (2000).
  • Trajanoski Z, Regittnig W, Wach P. Simulation studies on neural predictive control of glucose using the subcutaneous route. Comput. Methods Prog. Biomed. 56(2), 133–139 (1998).
  • Bishop CM. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ (2006).
  • Waljee AK, Higgins PD. Machine learning in medicine: a primer for physicians. Am. J. Gastroenterol. 105(6), 1224–1226 (2010).
  • Robertson G, Lehmann ED, Sandham W, Hamilton D. Blood glucose prediction using artificial neural networks trained with the aida diabetes simulator: a proof-of-concept pilot study. J. Electrical Comput. Eng. 2011, ID 681786 (2011).
  • Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita KS. An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Trans. Biomed. Eng. 58(9), 2467–2477 (2011).
  • Sutton RS, Barto AG. Reinforcement Learning: An Introduction. MIT press, Cambridge, 1(1), (1998).
  • Pineau J, Guez A, Vincent R, Panuccio G, Avoli M. Treating epilepsy via adaptive neurostimulation: a reinforcement learning approach. Int. J. Neur. Sys. 19(4), 227–240 (2009).
  • Moore BL, Doufas AG, Pyeatt LD. Reinforcement learning: a novel method for optimal control of propofol-induced hypnosis. Anesth. Analg. 112(2), 360–367 (2011).
  • Sutton RS. Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. In ML 216–224 (1990).
  • Ernst D, Geurts P, Wehenkel L. Tree-based batch mode reinforcement learning. J. Mach. Learn. Res. 6, 503–556 (2005).
  • Ernst D, Stan G-B, Goncalves J, Wehenkel L. Clinical Data Based Optimal STI Strategies for HIV; A Reinforcement Learning Approach. In Decision and Control, 2006 45th IEEE Conference on 667–672, IEEE (2006).
  • Deisenroth MP, Rasmussen CE. PILCO: A Model-Based and Data-Efficient Approach to Policy Search. In Proceedings of the 28th International Conference on Machine Learning, Bellevue, Washington, USA (ICML-11) 465–472 (2011).
  • Gaweda AE, Muezzinoglu MK, Jacobs AA, Aronoff GR, Brier ME. Model predictive control with reinforcement learning for drug delivery in renal anemia management. Conf. Proc. 1, 5177–5180 (2006).
  • Moore BL, Quasny TM, Doufas AG. Reinforcement learning versus proportional-integral-derivative control of hypnosis in a simulated intraoperative patient. Anesth. Analg. 112(2), 350–359 (2011).
  • Daskalaki E, Diem P, Mougiakakou SG. An Actor-Critic based controller for glucose regulation in type 1 diabetes. Comput. Methods Prog. Biomed. 109(2), 116–125. (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.