425
Views
50
CrossRef citations to date
0
Altmetric
Reviews

The composite of hydroxyapatite and calcium sulphate: a review of preclinical evaluation and clinical applications

, &
Pages 675-684 | Published online: 09 Jan 2014

References

  • Albrektsson T, Hard tissue response. In: Handbook of Biomaterial Properties. Black J, Hastings G (Eds). Chapman & Hall, London, UK (1998).
  • Markovic M, Takagi S, Chow LC. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Bioceramics 192–1, 773–776 (2000).
  • Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J. Mat. Sci. Mater. Med. 12(2), 135–139 (2001).
  • Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31 (Suppl. 4), 37–47 (2000).
  • LeGeros RZ, Parsons JR, Daculsi G et al. Significance of the porosity and physical chemistry of calcium phosphate ceramics: biodegradation-rioresorption. In: Bioceramics: Material Characteristics versus in vivo Behaviour (Vol. 523). Ducheyne P, Lemons JE ( Eds). Annals of the New York Academy of Science, 268–271 (1988).
  • Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res. 157, 259–278 (1981).
  • Frayssinet P, Fages J, Bonel G, Rouquet N. Biotechnology, material sciences and bone repair. Eur. J. Orthop. Surg. Traumatol. 8, 17–25 (1998).
  • Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin. Orthop. 360, 71–86 (1999).
  • Tay BKB, Patel VV, Bradford DS. Calcium sulfate- and calcium phosphate-based bone substitutes - Mimicry of the mineral phase of bone. Orthop. Clin. North Am. 30(4), 615–623 (1999).
  • Khan SN, Tomin E, Lane JM. Clinical applications of bone graft substitutes. Orthop. Clin. North Am. 31(3), 389–398 (2000).
  • LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. 395, 81–98 (2002).
  • Hench LL. Bioactive materials: the potential for tissue regeneration. J. Biomed. Mater. Res. 41(4), 511–518 (1998).
  • Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur. Spine J. 10, S114–S121 (2001).
  • Dreesmann H. Knochenplombierung bei Hohlenforigen Defekten des Knochens. Beitr. Klin. Chir. 9, 804–810 (1892).
  • Nyström G. Plugging bone cavities with rivanol-plaster porridge. Acta Chir. Scand. 63, 296 (1928).
  • Edberg E. Some experiences of filling osseous cavities with plaster. Acta Chir. Scand. 67, 313–319 (1931).
  • Nielson A. The filling of infected and sterile bone cavities by means of plaster of paris. Acta Chir. Scand. 91, 17–27 (1944).
  • Kovacevic B. Ein Beitrag zum Problem der Hamartogenen Osteomyelitis. Arch. klin. Chir. 276, 432–443 (1953).
  • Peltier LF. The use of plaster of paris to fill defects in bone. Clin. Orthop. 21, 1–29 (1961).
  • Blaha JD. Calcium sulfate bone-void filler. Orthopedics 21(9), 1017–1019 (1998).
  • Gitelis S, Piasecki P, Turner T, Haggard W, Charters J, Urban R. Use of a calcium sulfate-based bone graft substitute for benign bone lesions. Orthopedics 24(2), 162–166 (2001).
  • Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin. Orthop. 382, 42–50 (2001).
  • Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GBJ. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery - One institution's experience. J. Bone Joint Surg. Am. 83A, 8–18 (2001).
  • Sidqui M, Collin P, Vitte C, Forest T N. Osteoblast adherence and resorption activity of isolated osteoclasts on calcium-sulfate hemihydrate. Biomaterials 16(17), 1327–1332 (1995).
  • Bignon A, Chouteau J, Chevalier J et al. Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J. Mater. Sci. Mater. Med. 14(12), 1089–1097 (2003).
  • Eggli PSM, Moller WP, Schenk RKM. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution. [Report]. Clin. Orthop. Relat. Res. 232, 127–138 (1988).
  • Hing KA, Annaz B, Saeed S, Revell PA, Buckland T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J. Mater. Sci. Mater. Med. 16(5), 467–475 (2005).
  • Malmström J. On Bone Regeneration in Porous Bioceramics. Thesis. University of Gothenburg (2007).
  • Hing KA, Saeed S, Annaz B, Buckland T, Revell PA. Microporosity affects bioactivity of macroporous hydroxyapatite bone graft substitutes. Key Eng. Mater. 273–276 (2004).
  • Annaz B, Hing KA, Kayser M, Buckland T, Silvio LD. Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J. Microsc. 215(1), 100–110 (2004).
  • Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K. Influence of hydroxyapatite microstructure on human bone cell response. J. Biomed. Mater. Res. Part A 78A(2), 222–235 (2006).
  • Boyde A, Corsi A, Quarto R, Cancedda R, Bianco P. Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24(6), 579–589 (1999).
  • Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J. Biomed. Mater. Res. Part A 68A(1), 187–200 (2004).
  • Nilsson M. Injectable Calcium Sulphate and Calcium Phosphate Bone Substitutes. Thesis. Lund University (2003).
  • Nilsson M, Wang JS, Wielanek L, Tanner KE, Lidgren L. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. J. Bone Joint Surg. Brit. 86B(1), 120–125 (2004).
  • Voor MJ, Borden J, Burden RL Jr, Waddell SW. Cancellous bone defect healing with a novel calcium sulfate - hydroxyapatite composite injectable bone substitute. Presented at: 56th Annual Meeting of the Orthopaedic Research Society, New Orleans (2010).
  • Wang JS, Zhang M, McCarthy I, Tanner KE, Lidgren L. Biomechanics and bone integration on injectable calcium sulphate and hydroxyapatite in large bone defect in rat. Presented at: 52nd Annual Meeting of the Orthopaedic Research Society, Chicago (2006).
  • Lindberg F, Lidén E, Sandell V. Antibiotic elution and bone remodeling with a novel bone substitute impregnated with gentamicin. Presented at: 31st Annual Meeting of the European Bone and Joint Infection Society, Montreux (2012).
  • Rawlings CE III, Wilkins RH, Hanker JS, Georgiade NG, Harrelson JM. Evaluation in cats of a new material for cranioplasty: a composite of plaster of Paris and hydroxylapatite. J. Neurosurg. 69, 269–275 (1988).
  • Wang JS, Goodman S, Aspenberg P. Bone formation in the presence of phagocytosable hydroxyapatite particles. Clin. Orthop. Relat. Res. 304, 272–279 (1994).
  • Sato S, Koshino T, Saito T. Osteogenic response of rabbit tibia to hydroxyapatite particle-Plaster of Paris mixture. Biomaterials 19, 1895–1900 (1998).
  • Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10(2), S96–S101 (2001).
  • Härtter S. Experimentelle Untersuchungen zum Einfluβ von Kalziumsulfat auf die Knochenheilung bei Kaninchen. Thesis. Fachverlag Köhler, Giessen (1998).
  • Nilsson M, Wielanek L, Wang JS, Tanner KE, Lidgren L. Factors influencing the compressive strength of an injectable calcium sulfate/hydroxyapatite cement. J. Mater. Sci. Mater. Med. 14(5), 399–404 (2003).
  • Wang JS, Nilsson M, McCarthy I, Tanner KE, Lidgren L. Resorption and bone ingrowth of injectable bone substitute: a comparative study in rabbit. Presented at European Orthopaedic Research Society Annual Meeting, Helsinki (2003).
  • Ricci JL, Alexander H, Nadkarni P et al. Biological mechanism of calcium-sulfate replacement by bone. In: Bone Engineering. Davies JE ( Ed.). Em Squared Inc., 332–344 (2000).
  • Cabañas MV, Rodríguez-Lorenzo LM, Vallet-Regí M. Setting behavior and in vitro bioactivity of hydroxyapatite/calcium sulfate cements. Chem. Mater. 14(8), 3550–3555 (2002).
  • Payne JM, Cobb CM, Rapley JW, Killoy WJ, Spencer P. Migration of human gingival fibroblasts over guided tissue regeneration barrier materials. J. Periodontol. 67(3), 236–244 (1996).
  • Park EK, Lee YE, Choi JY et al. Cellular biocompatibility and stimulatory effects of calcium metaphosphate on osteoblastic differentiation of human bone marrow-derived stromal cells. Biomaterials 25(17), 3403–3411 (2004).
  • Thomas MV , Puleo DA. Calcium sulfate: Properties and clinical applications. J. Biomed. Mater. Res. Part B: Appl. Biomater. 88B, 597–610 (2009).
  • Strocchi R, Orsini G, Iezzi G et al. Bone regeneration with calcium sulfate: evidence for increased angiogenesis. J. Oral Implantol. 28(6), 273–278 (2002).
  • Urist MR. Bone: formation by autoinduction. Science 150(3698), 893–899 (1965).
  • Hench LL. Biomaterials: a forecast for the future. Biomaterials 19(16), 1419–1423 (1998).
  • Walsh WR, Morberg P, Yu Y et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin. Orthop. Relat. Res. 406, 228–236 (2003).
  • Lazáry Á, Balla B, Kósa JP et al. Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells. Biomaterials 28(3), 393–399 (2007).
  • Wang JS, Zampelis V, Lidgren L, Isaksson H, Tägil M. The effect of a biphasic injectable bone substitute on the interface strength in a rabbit knee prosthesis model. Presented at European Orthopaedic Research Society Annual Meeting, Amsterdam (2012).
  • Truedsson A, Wang JS, Lindberg P, Gordh M, Sunzel B, Warfvinge G. Bone substitute as an on-lay graft on rat tibia. Clin. Oral Implants Res. 21(4), 424–429 (2010).
  • Abramo A, Geijer M, Kopylov P, Tägil M. Osteotomy of distal radius fracture malunion using a fast remodeling bone substitute consisting of calcium sulphate and calcium phosphate. J. Biomed. Mater. Res. 92B(1), 281–286 (2010).
  • Tieghi RM, Consorti GM, Clauser LCM. Contouring of the forehead irregularities (washboard effect) with bone biomaterial. [Miscellaneous Article]. J. Craniofacial Surg. 23(3), 932–933 (2012).
  • Schindler OS, Cannon SR, Briggs TWR, Blunn GW. Use of a novel bone graft substitute in peri-articular bone tumours of the knee. The Knee 14(6), 458–464 (2007).
  • Rauschmann M, Vogl T, Verheyden A et al. Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (Cerament™ SpineSupport) in vertebral compression fractures due to osteoporosis. Eur. Spine J. 19(6), 887–892 (2010).
  • Marcia S, Boi C, Dragani M et al. Effectiveness of a bone substitute (CERAMENTâ„¢) as an alternative to PMMA in percutaneous vertebroplasty: 1-year follow-up on clinical outcome. Eur. Spine J. 21(1), 112–118 (2012).
  • Masala S, Nano G, Marcia S, Muto M, Fucci FPM, Simonetti G. Osteoporotic vertebral compression fractures augmentation by injectable partly resorbable ceramic bone substitute (Cerament™ SpineSupport): a prospective nonrandomized study. Neuroradiology 54(6), 589–596 (2012).
  • Siemund R, Nilsson LT, Cronqvist M, Stromqvist B. Initial Clinical experience with a new biointegrative cement for vertebroplasty in osteoporotic vertebral fractures. Intervent. Neuroradiol. 15(3), 335–340 (2009).
  • Karr JC. Clinical case presentation: metatarsal delayed union management in diabetic foot patient with Cerament™|Bone Void Filler. J. Diabet. Foot Complications 2(3), 65–68 (2010).
  • Karr JC. Management of a diabetic patient presenting with forefoot osteomyelitis: the use of cerament™|bone void filler impregnated with vancomycin – an off label use. J. Diabet. Foot Complications 1(4), 94–100 (2009).
  • Hatten HP, Voor MJ. Bone healing using a bi-phasic ceramic bone substitute demonstrated in human vertebroplasty and with histology in a rabbit cancellous bone defect model. Intervent. Neuroradiol. 18(1), 105–113 (2012).
  • Abramo A, Tägil M, Geijer M, Kopylov P. Osteotomy of dorsally displaced malunited fractures of the distal radius: no loss of radiographic correction during healing with a minimally invasive fixation technique and an injectable bone substitute. Acta Orthop. 79(2), 262–268 (2008).
  • Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26(14), 1511–1515 (2001).
  • Alvarez L, Pérez-Higueras A, Quiñones D, Calvo E, Rossi RE. Vertebroplasty in the treatment of vertebral tumors: postprocedural outcome and quality of life. Eur. Spine J. 12(4), 356–360 (2003).
  • Prather H, Van Dillen L, Metzler JP, Riew KD, Gilula LA. Prospective measurement of function and pain in patients with non-neoplastic compression fractures treated with vertebroplasty. J. Bone Joint Surg. 88(2), 334–341 (2006).
  • Lin WC, Lee YC, Lee CH et al. Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis. Eur. Spine J. 17(4), 592–599 (2008).
  • Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226(1), 119–124 (2003).
  • Lin WC, Cheng TT, Lee YC et al. New vertebral osteoporotic compression fractures after percutaneous vertebroplasty: retrospective analysis of risk factors. J. Vasc. Intervent. Radiol. 19(2), 225–231 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.