280
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Progress in biopolymer-based biomaterials and their application in controlled drug delivery

, , &
Pages 813-833 | Published online: 09 Jan 2014

References

  • Halperin A, Fragneto G, Schollier A, Sferrazza M. Primary versus ternary adsorption of proteins onto PEG brushes. Langmuir 23(21), 10603–10617 (2007).
  • Heuberger M, Drobek T, Spencer ND. Interaction Forces and morphology of a protein-resistant poly(ethylene glycol) layer. Biophys. J. 88(1), 495–504 (2005).
  • Van TSR, Hennink WE. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev. Med. Devices. 4(2), 147–164 (2007).
  • Peng S, Derrien TL, Cui J, Xu C, Luo D. From cells to DNA materials. Mater. Today 15, 190–194 (2012).
  • Ragauskas AJ, Williams CK, Davison BH et al. The Path Forward for biofuels and biomaterials. Science 311, 484–489 (2006).
  • Scheller J, Gohrs K-H, Grosse F, Conrad U. Production of spider silk proteins in tobacco and potato. Nat. Biotechnol. 19(6), 573–577 (2001).
  • Deming TJ. Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization. Adv. Polym. Sci. 202, 1–18 (2006).
  • Kricheldorf HR. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem. Int. Ed. 45(35), 5752–5784 (2006).
  • Plante OJ, Palmacci ER, Seeberger PH. Automated solid-phase synthesis of oligosaccharides. Science 291(5508), 1523–1527 (2001).
  • Statz AR, Kuang J, Barron AE, Szleifer I, Messersmith PB. Experimental and theoretical investigation of chain length and surface coverage on fouling of surface grafted polypeptoids. Biointerphases 4, FA22–FA32 (2009).
  • Farrugia A. Safety of plasma volume expanders. J. Clin. Pharmacol. 51(3), 292–300 (2011).
  • Herold DA, Keil K, Bruns DE. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacol. 38(1), 73–76 (1989).
  • Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18), 5605–5620 (2001).
  • Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49(36), 6288–6308 (2010).
  • Bohrn R, Potthast A, Rosenau T, Sixta H, Kosma P. Synthesis and testing of a novel fluorescence label for carboxyls in carbohydrates and cellulosics. Synlett 20, 3087–3090 (2005).
  • Satoh H, Hayashi M, Satoh T, Kakuchi T, Kaga H, Takahashi K. Formation of anhydrosugars from polysaccharides in ionic liquids by microwave irradtion. In: Ionic Liquid Applications: Pharmaceutics, Therapeutics, and Biotechnology. Oxford University Press, Oxford, UK, 145–154 (2010).
  • Rudra JS, P.K. T, Hildeman DA, Jung JP, Collier JH. Immune responses to coiled coil supramolecular biomaterials. Biomaterials 31, 8475–8483 (2010).
  • Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).
  • Shoulders MD, Raines RT. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
  • Zhang Q, Yao K, Liu L et al. Evaluation of porous collagen membrane in guided tissue regeneration. Artif. Cell. Blood Sub. 27(3), 245–253 (1999).
  • Damink LHHO, Dijkstra PJ, van Luyn JA, van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide Biomaterials 17, 765–773 (1996).
  • Damink LHHO, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J. Glutaraldehyde as a cross-linking agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 6(8), 460–472 (1995).
  • Hey KB, Lachs CM, Raxworthy MJ, Wood EJ. Crosslinked fibrous collagen for use as a dermal implant - control of the cytotoxic effect of glutaraldehyde and dimethylsuberimidate Bioetchnol. Appl. Biochem. 12(1), 85–93 (1990).
  • Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials 17(5), 471–484 (1996).
  • Zeugolis DI, Khew ST, Yew ESY et al. Electro-spinning of pure collagen nanofibers – just an expensive way to make gelatin? Biomaterials 29(15), 2293–2305 (2008).
  • Torres-Giner S, Gimeno-Alcaniz JV, Ocio MJ, Lagaron JM. Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. Appl. Mater. Inter. 1, 218–223 (2009).
  • Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen J. Biomed. Mater. Res. B Appl. Biomater. 71B(2), 343–354 (2004).
  • Mitra T, Sailakshmi G, Gnanamani A, Mandal AB. Di-carboxylic acid cross-linking interactions improves thermal stability and mechanical strength of reconstituted type I collagen. J. Therm. Anal. Calorim. 105(1), 325–330 (2011).
  • Usha R, Sreeram KJ, Rajaram A. Stabilization of collagen with EDC/NHS in the presence of L-lysine: a comprehensive study. Colloid. Surf. B 90, 83–90 (2012).
  • Zhang X, Xu L, Huang X, Wei S, Zhai M. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation. J. Biomed. Mater. Res. A 100A(11), 2960–2969 (2012).
  • Jenkins CL, Raines RT. Insights on the conformational stability of collagen. Nat. Prod. Rep. 19(1), 49–59 (2002).
  • Kotch FW, Raines RT. Self-assembly of synthetic collagen triple helices. Proc. Natl Acad. Sci. USA 103, 3028–3033 (2006).
  • Cejas MA, Kinney WA, Chen C et al. Collagen-related peptides: self-assembly of short, single strands into a functional biomaterial of micrometer scale. J. Am. Chem. Soc. 129, 2202–2203 (2007).
  • Pires MM, Chmielewski J. Self-assembly of collagen peptides into microflorettes via metal coordination. J. Am. Chem. Soc. 131, 2706–2712 (2009).
  • Brodsky B, Baum J. Structural biology: modelling collagen diseases. Nature 453, 998–999 (2008).
  • Kuivaniemi H, Tromp G, Prockop DJ. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J. 5, 2052–2060 (1991).
  • Kotch FW, Guzei IA, Raines RT. Stabilization of the collagen triple helix by O-methylation of hydroxyproline residues. J. Am. Chem. Soc. 130, 2952–2953 (2008).
  • Shoulders MD, Guzei IA, Raines RT. 4-Chloroprolines: synthesis, conformational analysis, and effect on the collagen triple helix. Biopolymers 89(5), 443–454 (2008).
  • Shoulders MD, Hodges JA, Raines RT. Reciprocity of steric and stereoelectronic effects in the collagen triple helix. J. Am. Chem. Soc. 128(25), 8112–8113 (2006).
  • Shoulders MD, Raines RT. Modulating collagen triple-helix stability with 4-chloro, 4-fluoro, and 4-methylprolines. Adv. Exp. Med. Biol. 611, 251–252 (2009).
  • Yamazaki CM, Kadoya Y, Hozumi K et al. A collagen-mimetic triple helical supramolecule that evokes integrin-dependent cell responses. Biomaterials 31, 1925–1934 (2010).
  • Yamazaki CM, Asada S, Kitagawa K, Koide T. Artificial collagen gels via self-assembly of de novo designed peptides. Peptide Science 90(6), 816–823 (2008).
  • Yamada S, Nagaoka H, Terajima M, Tsuda N, Hayashi Y, Yamauchi M. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent. Mater. J. 32, 88–95 (2013).
  • Banwell EF, Abelardo ES, Adams DJ et al. Rational design and application of responsive a-helical peptide hydrogels. Nat. Mater. 8, 596–600 (2009).
  • Papapostolou D, Smith AM, Atkins EDT et al. Engineering nanoscale order into a designed protein fiber. Proc. Natl Acad. Sci. USA 104(26), 10853–10858 (2007).
  • Tronci G, Neffe AT, Pierce BF, Lendlein A. An entropy-elastic gelatin-based hydrogel system. J. Mater. Chem. 20(40), 8875–8884 (2010).
  • Pierce BF, Pittermann E, Ma N et al. Viability of human mesenchymal stem cells seeded on crosslinked entropy-elastic gelatin-based hydrogels. Macromol. Biosci. 12, 312–321 (2012).
  • Hu X, Ma L, Wang C, Gao C. Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-b1 for cartilage tissue engineering. Macromol. Biosci. 9, 1194–1201 (2009).
  • Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels Biomaterials 31(21), 5536–5544 (2010).
  • Ovsianikov A, Deiwick A, van Vlierberghe S et al. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering Biomacromolecules 12(4), 851–858 (2011).
  • Pierce BF, Tronci G, Roessle M, Neffe AT, Jung F, Lendlein A. Photocrosslinked co-networks from glycidylmethacrylated gelatin and poly(ethylene glycol) methacrylates. Macromol. Biosci. 12(4), 484–493 (2012).
  • Pierce BF, Neffe AT, Lendlein A. Using mass spectrometry to investigate the structural features of photocrosslinked co-networks based on Gelatin and Poly(ethylene glycol) Methacrylates. Mater. Res. Soc. Symp. Proc. 1403, 145–150 (2011).
  • Elvin CM, Vuocolo T, Brwonlee AG et al. A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials 31, 8323–8331 (2010).
  • Hara M, Koshimizu N, Yoshida M, Haug IJ, Ulset AST, Christensen BE. Cross-linking and depolymerisation of g-irradiated fish gelatin and porcine gelatin studied by SEC-MALLS and SDS-PAGE: a comparative study. J. Biomater. Sci. 21, 877–892 (2010).
  • Neffe AT, Zaupa A, Pierce BF, Hofmann D, Lendlein A. Knowledge-based tailoring of gelatin-based materials by functionalization with Tyrosine-derived groups. Macromol. Rapid Commun. 31(17), 1534–1539 (2010).
  • Zaupa A, Neffe AT, Pierce BF, Lendlein A, Hofmann D. A molecular dynamic analysis of gelatin as an amorphous material: prediction of mechanical properties of gelatin systems. Int. J. Artif. Organs 34(2), 139–151 (2011).
  • Zaupa A, Neffe AT, Pierce BF, Nochel U, Lendlein A. Influence of tyrosine-derived moieties and drying conditions on the formation of helices in gelatin. Biomacromolecules 12(1), 75–81 (2011).
  • Neffe AT, Loebus A, Zaupa A, Stoetzel C, Mueller FA, Lendlein A. Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers. Acta Biomater. 7(4), 1693–1701 (2011).
  • Jung F, Goers J, Roch T et al. Physically crosslinked gelatins do not induce angiogenesis or thrombus formation in the developing vasculature in the avian chorioallantoic membrane. Clin. Hemorheol. microcirc. 50, 55–63 (2012).
  • Roch T, Pierce BF, Zaupa A, Jung F, Neffe AT, Lendlein A. Reducing the endotoxin burden of desaminotyrosine- and desaminotyrosyl tyrosine-functionalized gelatin. Macromol. Symp. 309–310, 182–189 (2011).
  • Kuhbier JW, Allmeling C, Reimers K et al. Interactions between spider silk and cells--NIH/3T3 fibroblasts seeded on miniature weaving frames. PloS ONE 5(8), e12032 (2010).
  • Wendt H, Hillmer A, Reimers K et al. Artificial skin-culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PloS ONE 6(7), e21833 (2011).
  • Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for cornea tissue engineering. Biomaterials 30(7), 1299–1308 (2009).
  • Mandal BB, Das S, Choudhury K, Kundu SC. Implication of silk film RGD availability and surface roughness on cytoskeletal organization and proliferation of primary rat bone marrow cells. Tissue Eng. A 16(7), 2391–2403 (2010).
  • Wray LS, Hu X, Gallego J et al. Effect of processing on silk-based biomaterials: Reproducibility and biocompatibility. J. Biomed. Mater. Res. B Appl. Biomater. 998, 89–101 (2011).
  • Lawrence BD, Omenetto FG, Chui K, Kaplan DL. Processing methods to control silk fibroin film biomaterial features. J. Mater. Sci. 43(21), 6967–6985 (2008).
  • Mai-ngam K, Boonkitapattarakul K, Jaipaew J, Mai-ngam B. Evaluation of the properties of silk fibroin films from the non-mulberry silkworm samia cynthia ricini for biomaterial design. J. Biomater. Sci. Polym. Ed. 22, 2001–2022 (2011).
  • Lu Q, Hu X, Wang X et al. Water-insoluble silk films with silk I structure. Acta Biomater. 6(4), 1380–1387 (2010).
  • Cao Y, Wang B. Biodegradation of Silk Biomaterials. Int. J. Mol. Sci. 10, 1514–1524 (2009).
  • Lee OJ, Lee JM, Kim JH et al. Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J. Biomed. Mater. Res. A 100A, 2018–2026 (2012).
  • Lu Q, Zhang X, Hu X, Kaplan DL. Green Process to Prepare Silk Fibroin/Gelatin Biomaterial Scaffolds. Macromol. Biosci. 10, 289–298 (2010).
  • Sengupta S, Park SH, Seok GE et al. Quantifying osteogenic cell degradation of silk biomaterials. Biomacromolecules 11, 3592–3599 (2010).
  • Lee SM, Pippel E, Gosele U et al. Greatly increased toughness of infiltrated spider silk. Science 324(5926), 488–492 (2009).
  • Rajkhowa R, Gil ES, Kluge J et al. Reinforcing silk scaffolds with silk particles. Macromol. Biosci. 10(6), 599–611 (2010).
  • Silva SS, Maniglio D, Motta A, Mano JF, Reis RL, Migliaresi C. Genipin-modified silk-fibroin nanometric nets. Macromol. Biosci. 8, 766–774 (2008).
  • Lim YB, Lee M. Nanostructures of b-sheet peptides: steps towards bioactive functional materials. J. Mater. Chem. 18, 723–727 (2008).
  • Kopecek J, Yang J. Peptide-directed self-assembly of hydrogels. Acta Biomater. 5, 805–816 (2009).
  • Bowerman CJ, Nilsson BL. Review self-assembly of amphipathic β-sheet peptides: insights and applications. Peptide Sci. 98(3), 169–184 (2012).
  • Krishna OD, Kiick KL. Protein- and peptide-modified synthetic polymeric biomaterials. Peptide Sci. 94, 32–48 (2010).
  • Rodriguez-Cabello JC, Martin L, Alonso M, Arias FJ, Testera AM. “Recombinamers” as advanced materials for the post-oil age. Polymer 50(22), 5159–5169 (2009).
  • Bracalello A, Santopietro V, Vassalli M et al. Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 12(8), 2957–2965 (2011).
  • An B, DesRochers TM, Qin G et al. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior. Biomaterials 34, 402–412 (2013).
  • Celebi B, Cloutier M, Balloni R, Manotovani D, Bandiera A. Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation. Macromol. Biosci. 12(11), 1546–1554 (2012).
  • Yang B, Yu G, Zhao X, Jiao G, Ren S, Chai W. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS J. 276(7), 2125–2137 (2009).
  • Holme HK, Davidsen L, Kristiansen A, Smidsroed O. Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohyd. Polym. 73(4), 656–664 (2008).
  • Spuch C, Antequera D, Portero A et al. The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer's disease. Biomaterials 31(21), 5608–5618 (2010).
  • Yu J, Du KT, Fang Q et al. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31(27), 7012–7020 (2010).
  • Schatz C, Lecommandoux S. Polysaccharide-containing block copolymers: synthesis, properties and applications of an emerging family of glycoconjugates. Macromol. Rapid Commun. 31, 1664–1684 (2010).
  • Prabaharan M, Mano JF. Stimuli-responsive hydrogels based on polysaccharide incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci. 6, 991–1008 (2006).
  • Elchinger PH, Faugeras PA, Boens B et al. Polysaccharide: the “Click” chemistry impact. Polymers 3, 1607–1651 (2011).
  • Baskin JM, Bertozzi CR. Copper-free click chemistry: bio-orthogonal reagents for tagging azides. Aldrichimica Acta 43(1), 15–23 (2010).
  • Piluso S, Hiebl B, Gorb SN, Kovalev A, Lendlein A, Neffe AT. Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties. Int. J. Artif. Organs 34(2), 192–197 (2011).
  • Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal “Click” chemistries in the synthesis of functional soft materials. Chem. Rev. 109(11), 5620–5686 (2009).
  • Mergy J, Fournier A, Hachet E, Auzely-Velty R. Modification of polysaccharides via thiol-ene chemistry: a versatile route to functional biomaterials. J. Polym. Sci. Polym. Chem. 50, 4019–4028 (2012).
  • Huebsch N, Arany PR, Mao AS et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9(6), 518–526 (2010).
  • Neffe AT, Kobuch KA, Maier M et al. In vitro and in vivo evaluation of a multifunctional hyaluronic acid based hydrogel system for local application on the retina. Macromol. Symp. 309–310, 229–235 (2011).
  • Voepel J, Edlund U, Albertsson AC. Alkenyl-functionalized precursors for renewable hydrogels design. J. Polym. Sci. Polym. Chem. 47, 3595–3606 (2009).
  • Voepel J, Edlund U, Albertsson AC, Percec V. Hemicellulose-based multifunctional macroinitiator for single-electron-transfer mediated living radical polymerization. Biomacromolecules 12, 253–259 (2011).
  • Voepel J, Edlund U, Albertsson AC. A versatile single-electron-transfer mediated living radical polymerization route to glacatoglucomannan graft-copolymers with tunable hydrophilicity. J. Polym. Sci. Polym. Chem. 49, 2366–2372 (2011).
  • Fleet R, McLeary JB, Grumel V, Weber WG, Matahwa H, Sanderson RD. RAFT mediated polysaccharide copolymers. Eur. Polym. J. 44, 2899–2911 (2008).
  • Östmark E, Nyström D, Malmström E. Unimolecular Nanocontainers Prepared by ROP and Subsequent ATRP from Hydroxpropylcellulose. Macromolecules 41, 4405–4415 (2008).
  • Wang DA, Varghese S, Sharma B et al. Multifunctional chondrointinsulphate for cartilage tissue-biomaterial integration. Nat. Mater. 6(5), 385–392 (2007).
  • Wathier M, Stoddart SS, Sheehy MJ, Grinstaff MW. Acidic polysaccharide mimics via ring-opening metathesis polymerization. J. Am. Chem. Soc. 132(45), 15887–15889 (2010).
  • Cobucci-Ponzano B, Moracci M. Glycosynthases as tools for the production of glycan analogs of natural products. Nat. Prod. Rep. 29, 697–709 (2012).
  • Seeman NC. DNA in a material world. Nature 421(6921 Suppl.), 427–431 (2003).
  • Feldkamp U, Sacca B, Niemeyer CM. Dendritic DNA building blocks for amplified detection assays and biomaterials. Angew. Chem. Int. Ed. 48, 5996–6000 (2009).
  • Lee JB, Roh YH, Ho Um S et al. Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat. Nanotechnol. 4, 430–436 (2009).
  • Sanderson K. What to make with DNA origami. Nature 464, 158–159 (2010).
  • Kwak M, Herrmann A. Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chem. Soc. Rev. 40, 5475–5755 (2011).
  • Schnitzler T, Herrmann A. DNA Block Copolymers: functional materials for nanoscience and biomedicine. Acc. Chem. Res. 45(9), 1419–1430 (2012).
  • Anaya M, Kwak M, Musser AJ, Müllen K, Herrmann A. Tunable Hydrophobicity in DNA micelles. Design, synthesis, and characterization of a new family of DNA amphiphiles. Chem. Eur. J. 16, 12852–12859 (2010).
  • Campolongo MJ, Kahn JS, Cheng W, Yang D, Gupton-Campolongo T, Luo D. Adaptive DNA-based materials for switching, sensing, and logic devices. J. Mater. Chem. 21, 6113–6121 (2011).
  • Albertsson AC, Voepel J, Edlund U, Dahlman O, Soderqvist-Lindblad M. Design of renewable hydrogel release systems from fiberboard mill wastewater. Biomacromolecules 11(5), 1406–1411 (2010).
  • Isoda K, Kanayama N, Miyamoto D, Takarada T, Maeda M. RAFT-generated poly(N-isopropylacrylamide)-DNA block copolymers for temperature-responsive formation of polymer micelles React. Funct. Polym. 71, 367–371 (2011).
  • Alemdaroglu FE, Zhuang W, Zöphel L et al. Generation of multiblock Copolymers by PCR: Synthesis, Visualization and Nanomechanical Properties. Nano Lett. 9, 3658–3662 (2009).
  • Ayaz MS, Kwak M, Alemdaroglu FE, Wang J, Berger R, Herrmann A. Synthesis of DNA block copolymers with extended nucleic acid segments by enzymatic ligation: cut and paste large hybrid architectures. Chem. Communc. 47, 2243–2245 (2011).
  • Bellas E, Seiberg M, Garlick J, Kaplan DL. In vitro 3D full-thickness skin equivalent tissue model using silk and collagen biomaterials. Macromol. Biosci. 12(12), 1627–1636 (2012).
  • Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibrin/chitosan blends. Biomaterials 33, 2848–2857 (2012).
  • Garcia-Fuentes M, Giger E, Meinel L, Merkle HP. The effect of hyaluronic acid on silk fibroin conformation. Biomaterials 29, 633–642 (2008).
  • Hu X, Wang X, Rnjak J, Weiss AS, Kaplan DL. Biomaterials derived from silk-tropoelastin protein systems. Biomaterials 31, 8121–8131 (2010).
  • Hu X, Li D, Zhou F, Gao C. Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry. Acta Biomater. 7, 1618–1626 (2011).
  • Schatz C, Louguet S, Le Meins JF, Lecommandoux S. Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsides. Angew. Chem. Int. Ed. 48, 2572–2575 (2009).
  • Soontornworajit B, Zhou J, Zhang ZY, Wang Y. Aptamer-functionalized in situ injectable hydrogel for controlled protein release. Biomacromolecules 11(10), 2724–2730 (2010).
  • Orive G, Hernandez RM, Murua A, Pedraz JL. Recent advances in the use of encapsulated cells for effective delivery of therapeutics. Ther. Deliv. 1(3), 387–396 (2010).
  • Park N, Um SH, Funabashi H, Xu JF, Luo D. A cell-free protein-producing gel. Nat. Mater. 8(5), 432–437 (2009).
  • Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R. Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules 8(6), 1844–1850 (2007).
  • Armstrong JK, Hempel G, Koling S et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110(1), 103–111 (2007).
  • Hu XH, Ma L, Wang CC, Gao CY. Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-beta 1 for cartilage tissue engineering. Macromol. Biosci. 9(12), 1194–1201 (2009).
  • Epstein-Barash H, Stefanescu CF, Kohane DS. An in situ cross-linking hybrid hydrogel for controlled release of proteins. Acta Biomater. 8(5), 1703–1709 (2012).
  • Tan H, Rubin JP, Marra KG. Direct synthesis of biodegradable polysaccharide derivative hydrogels through aqueous Diels-Alder chemistry. Macromol. Rapid Commun. 32, 905–911 (2011).
  • Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 33(5), 1281–1290 (2012).
  • Alemdaroglu FE, Alemdaroglu NC, Langguth P, Herrmann A. DNA block copolymer micelles - a combinatorial tool for cancer Nanotechnology. Adv. Mater. 20(5), 899–902 (2008).
  • Ingle NP, Malone B, Reineke TM. Poly(glycoamidoamine)s: a broad class of carbohydrate-containing polycations for nucleic acid delivery. Trends. Biotechnol. 29(9), 443–453 (2011).
  • Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohyd. Polym. 79(1), 1–8 (2010).
  • Liu Z, Zhang Z, Zhou C, Jiao Y. Hydrophobic modifications of cationic polymers for gene delivery. Prog. Polym. Sci. 35(9), 1144–1162 (2010).
  • Wischke C, Zimmermann J, Wessinger B et al. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int. J. Pharmaceut. 365(1–2), 61–68 (2009).
  • Haidar ZS, Hamdy RC, Tabrizian M. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 29(9), 1207–1215 (2008).
  • Rabanel JM, Hildgen P. Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation. J. Microencapsulation 21(4), 413–431 (2004).
  • Wang X, Wenk E, Hu X et al. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 28(28), 4161–4169 (2007).
  • Wischke C, Borchert H-H, Zimmermann J, Siebenbrodt I, Lorenzen DR. Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J. Controlled Release 114(3), 359–368 (2006).
  • Balabushevich NG, Izumrudov VA, Larionova NI. Protein microparticles with controlled stability prepared via layer-by-layer adsorption of biopolyelectrolytes. Polym. Sci. Ser. A 54(7), 540–551 (2012).
  • Qi W, Yan XH, Fei JB, Wang AH, Cui Y, Li JB. Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials 30(14), 2799–2806 (2009).
  • De Geest BG, Dejugnat C, Prevot M, Sukhorukov GB, Demeester J, De Smedt SC. Self-rupturing and hollow microcapsules prepared from bio-polyelectrolyte-coated microgels. Adv. Funct. Mater. 17(4), 531–537 (2007).
  • Kim JH, Kim YS, Kim S et al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel J. Control. Release 111(1–2), 228–234 (2006).
  • Huang KS, Lu K, Yeh CS et al. Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J. Control. Release 137(1), 15–19 (2009).
  • Altimari I, Spizzirri UG, Iemma F, Curcio M, Puoci F, Picci N. pH-sensitive drug delivery systems by radical polymerization of gelatin derivatives. J. Appl. Polym. Sci. 125(4), 3006–3013 (2012).
  • Li Y, Zhang ZS, van Leeuwen HP, Stuart MAC, Norde W, Kleijn JM. Uptake and release kinetics of lysozyme in and from an oxidized starch polymer microgel. Soft Matter 7(21), 10377–10385 (2011).
  • Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J. Control. Release 134(1), 26–34 (2009).
  • Mørch ÝA, Donati I, Strand BL, Skjåk-Bræk G. Molecular engineering as an approach to design new functional properties of alginate. Biomacromolecules 8(9), 2809–2814 (2007).
  • Kristiansen KA, Schirmer BC, Aachmann FL, Skjåk-Bræk G, Draget KI, Christensen BE. Novel alginates prepared by independent control of chain stiffness and distribution of G-residues: structure and gelling properties. Carbohyd. Polym. 77(4), 725–735 (2009).
  • Lendlein A, Neffe AT, Pierce BF, Vienken J. Why are so few degradable polymeric biomaterials currently established in clinical applications? Int. J. Artif. Organs 34(2), 71–75 (2011).
  • Lendlein A, Wischke C. How to accelerate biomaterial development? Strategies to support the application of novel polymer-based biomaterials in implantable devices. Expert Rev. Med. Devices 8(5), 533–537 (2011).
  • Chen P-Y, McKittrick J, Meyers MA. Biological materials: functional adaptations and bioinspired designs. Prog. Mater. Sci. 57(8), 1492–1704 (2012).
  • Lodish H, Berk A, Zipursky SL, Matsudeira P, Baltimore D, Darnell J. Molecular Cell Biology. W.H. Freeman, New York, NY (2000).
  • Birk DE, Silver FH, Trelstad RL. Cell Biology of Extracellular Matrix. Hay ED ( Ed.). Plenum Press, NY, USA, 222 (1991).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.