144
Views
5
CrossRef citations to date
0
Altmetric
Reviews

How clinically effective is intravascular ultrasound in interventional cardiology? Present and future perspectives

, , , , , & show all
Pages 735-749 | Published online: 09 Jan 2014

References

  • Waller BF, Pinkerton CA, Slack JD. Intravascular ultrasound: a histological study of vessels during life. The new ‘gold standard’ for vascular imaging. Circulation 85(6), 2305–2310 (1992).
  • Nissen SE, Gurley JC, Grines CL et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 84(3), 1087–1099 (1991).
  • Prati F, Arbustini E, Labellarte A et al. Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries. Heart 85(5), 567–570 (2001).
  • Stone GW, Maehara A, Lansky AJ et al. A prospective natural-history study of coronary atherosclerosis. N. Med. 364(3), 226–235 (2011).
  • Gogas BD, Farooq V, Serruys PW, Garcia-Garcia HM. Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond. Int. J. Cardiovasc. Imaging 27(2), 225–237 (2011).
  • Dohi T, Miyauchi K, Okazaki S et al. Plaque regression determined by intravascular ultrasound predicts long-term outcomes of patients with acute coronary syndrome. J. Atheroscler. Thromb. 18(3), 231–239 (2011).
  • Kaneda H, Terashima M, Yamaguchi H. The role of intravascular ultrasound in the determination of progression and regression of coronary artery disease. Curr. Atheroscler. Rep. 14(2), 175–185 (2012).
  • Von Birgelen C, De Feyter PJ, De Vrey EA et al. Simpson's rule for the volumetric ultrasound assessment of atherosclerotic coronary arteries: a study with ECG-gated three-dimensional intravascular ultrasound. Coron. Artery Dis. 8(6), 363–369 (1997).
  • Bruining N, Sabate M, De Feyter PJ et al. Quantitative measurements of in-stent restenosis: A comparison between quantitative coronary ultrasound and quantitative coronary angiography. Catheter Cardiovasc. Interv. 48(2), 133–142 (1999).
  • Bruining N, Von Birgelen C, De Feyter PJ et al. ECG-gated versus nongated three-dimensional intracoronary ultrasound analysis: implications for volumetric measurements. Cathet Cardiovasc. Diagn. 43(3), 254–260 (1998).
  • Von Birgelen C, Mintz GS, Nicosia A et al. Electrocardiogram-gated intravascular ultrasound image acquisition after coronary stent deployment facilitates on-line three-dimensional reconstruction and automated lumen quantification. J. Am. Coll. Cardiol. 30(2), 436–443 (1997).
  • Von Birgelen C, Mintz GS, De Feyter PJ et al. Reconstruction and quantification with three-dimensional intracoronary ultrasound. An update on techniques, challenges, and future directions. Eur. Heart J. 18(7), 1056–1067 (1997).
  • Mintz GS, Nissen SE, Anderson WD et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 37(5), 1478–1492 (2001).
  • Engeler CE, Ritenour ER, Amplatz K. Axial and lateral resolution of rotational intravascular ultrasound: in vitro observations and diagnostic implications. Cardiovasc. Intervent. Radiol. 18(4), 239–242 (1995).
  • Goldstein A, Madrazo BL. Slice-thickness artifacts in gray-scale ultrasound. J. Clin. Ultrasound 9(7), 365–375 (1981).
  • Goldstein A. Slice thickness measurements. J. Ultrasound Med. 7(9), 487–498 (1988).
  • Li X, Wu W, Chung Y et al. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film. IEEE Trans Ultrason Ferroelectr. Freq. Control. 58(11), 2281–2288 (2011).
  • Regar E. Invasive imaging technologies: can we reconcile light and sound? J. Cardiovasc. Med. (Hagerstown) 12(8), 562–570 (2011).
  • Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
  • Kim SJ, Lee H, Kato K, Yonetsu T, Jang IK. In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound. Int. J. Cardiovasc. Imaging 29(5), 967–975 (2013).
  • Karanasos A, Ligthart J, Witberg K, Van Soest G, Bruining N, Regar E. Optical Coherence Tomography: Potential Clinical Applications. Curr. Cardiovasc. Imaging Rep. 5(4), 206–220 (2012).
  • Rosenfield K, Losordo DW, Ramaswamy K et al. Three-dimensional reconstruction of human coronary and peripheral arteries from images recorded during two-dimensional intravascular ultrasound examination. Circulation 84(5), 1938–1956 (1991).
  • Fuessl RT, Mintz GS, Pichard AD et al. In vivo validation of intravascular ultrasound length measurements using a motorized transducer pullback system. Am. J. Cardiol. 77(12), 1115–1118 (1996).
  • Hamers R, Bruining N, Knook M, Sabate M, Roelandt JRTC. A novel approach to quantitative analysis of intravascular ultrasound images. Comput. Cardiol. 589–592 (2001).
  • Von Birgelen C, Erbel R, Di Mario C et al. Three-dimensional reconstruction of coronary arteries with intravascular ultrasound. Herz 20(4), 277–289 (1995).
  • Roelandt JR, Di Mario C, Pandian NG et al. Three-dimensional reconstruction of intracoronary ultrasound images. Rationale, approaches, problems, and directions. Circulation 90(2), 1044–1055 (1994).
  • De Winter S, Hamers R, Roelandt JRTC, Serruys PW, Bruining N. Quantitative gated intravascular ultrasound largely reduces the population size for atherosclerosis progression-regression trials: a computer simulation study. IEEE Comput. Cardiol. 36, 829–832 (2009).
  • Bruining N, Von Birgelen C, Di Mario C et al. Dynamic three-dimensional reconstruction of ICUS images based on an ecg-gated pull-back device. Comput. Cardiol. 633–636 (1995).
  • De Winter SA, Hamers R, Degertekin M et al. Retrospective image-based gating of intracoronary ultrasound images for improved quantitative analysis: the intelligate method. Catheter Cardiovasc. Interv. 61(1), 84–94 (2004).
  • Nair A, Kuban BD, Obuchowski N, Vince DG. Assessing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. Ultrasound Med. Biol. 27(10), 1319–1331 (2001).
  • Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17), 2200–2206 (2002).
  • Wu X, Maehara A, Mintz GS et al. Virtual histology intravascular ultrasound analysis of non-culprit attenuated plaques detected by grayscale intravascular ultrasound in patients with acute coronary syndromes. Am. J. Cardiol. 105(1), 48–53 (2010).
  • Shin ES, Garcia-Garcia HM, Ligthart JM et al. In vivo findings of tissue characteristics using iMap IVUS and Virtual Histology IVUS. EuroIntervention 6(8), 1017–1019 (2011).
  • Sathyanarayana S, Carlier S, Li W, Thomas L. Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention 5(1), 133–139 (2009).
  • Yun KH, Mintz GS, Farhat N et al. Relation between angiographic lesion severity, vulnerable plaque morphology and future adverse cardiac events (from the Providing Regional Observations to Study Predictors of Events in the Coronary Tree study). Am. J. Cardiol. 110(4), 471–477 (2012).
  • Komiyama N, Berry GJ, Kolz ML et al. Tissue characterization of atherosclerotic plaques by intravascular ultrasound radiofrequency signal analysis: an in vitro study of human coronary arteries. Am. Heart J. 140(4), 565–574 (2000).
  • Naito J, Masuyama T, Mano T et al. Ultrasonic myocardial tissue characterization in patients with dilated cardiomyopathy: value in noninvasive assessment of myocardial fibrosis. Am. Heart J. 131(1), 115–121 (1996).
  • Garcia-Garcia HM, Gogas BD, Serruys PW, Bruining N. IVUS-based imaging modalities for tissue characterization: similarities and differences. Int. J. Cardiovasc. Imaging 27(2), 215–224 (2011).
  • Brugaletta S, Costa JR Jr, Garcia-Garcia HM. Assessment of drug-eluting stents and bioresorbable stents by grayscale IVUS and IVUS-based imaging modalities. Int. J. Cardiovasc. Imaging 27(2), 239–248 (2011).
  • Van Ditzhuijzen NS, Van Beusekom HM, Ligthart JM, Regar E. Invasive imaging of the coronary atherosclerotic plaque. Minerva Cardioangiol. 60(3), 305–329 (2012).
  • Yamada R, Okura H, Kume T et al. A comparison between 40 MHz intravascular ultrasound iMap imaging system and integrated backscatter intravascular ultrasound. J. Cardiol. 61(2), 149–154 (2013).
  • Muraoka Y, Sonoda S, Kashiyama K et al. Evaluation of in-stent neointimal tissue components using integrated backscatter intravascular ultrasound: comparison of drug-eluting stents and bare-metal stents. Int. J. Cardiovasc. Imaging 28(7), 1635–1641 (2012).
  • Ohota M, Kawasaki M, Ismail TF, Hattori K, Serruys PW, Ozaki Y. A histological and clinical comparison of new and conventional integrated backscatter intravascular ultrasound (IB-IVUS). Circ. J. 76(7), 1678–1686 (2012).
  • Kawasaki M, Takatsu H, Noda T et al. In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 105(21), 2487–2492 (2002).
  • Okubo M, Kawasaki M, Ishihara Y et al. Development of integrated backscatter intravascular ultrasound for tissue characterization of coronary plaques. Ultrasound Med. Biol. 34(4), 655–663 (2008).
  • Bruining N, Verheye S, Knaapen M et al. Three-dimensional and quantitative analysis of atherosclerotic plaque composition by automated differential echogenicity. Catheter Cardiovasc. Interv. 70(7), 968–978 (2007).
  • Oemrawsingh PV, Mintz GS, Schalij MJ, Zwinderman AH, Jukema JW, Van Der Wall EE. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation 107(1), 62–67 (2003).
  • Roy P, Steinberg DH, Sushinsky SJ et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur. Heart J. 29(15), 1851–1857 (2008).
  • Roy P, Waksman R. Intravascular ultrasound guidance in drug-eluting stent deployment. Minerva Cardioangiol. 56(1), 67–77 (2008).
  • Abizaid AS, Mintz GS, Mehran R et al. Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation 100(3), 256–261 (1999).
  • Ben-Dor I, Torguson R, Gaglia MA, Jr. et al. Correlation between fractional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis. EuroIntervention 7(2), 225–233 (2011).
  • Kang SJ, Lee JY, Ahn JM et al. Validation of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ. Cardiovasc. Interv. 4(1), 65–71 (2011).
  • Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 100(3), 250–255 (1999).
  • Waksman R, Legutko J, Singh J et al. FIRST: Fractional Flow Reserve and Intravascular Ultrasound Relationship Study. J. Am. Coll. Cardiol. 61(9), 917–923 (2013).
  • De La Torre Hernandez JM, Hernandez Hernandez F, Alfonso F et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J. Am. Coll. Cardiol. 58(4), 351–358 (2011).
  • Weissman NJ, Palacios IF, Nidorf SM, Dinsmore RE, Weyman AE. Three-dimensional intravascular ultrasound assessment of plaque volume after successful atherectomy. Am. Heart J. 130(3 Pt 1), 413–419 (1995).
  • Sakurai R, Ako J, Morino Y et al. Predictors of edge stenosis following sirolimus-eluting stent deployment (a quantitative intravascular ultrasound analysis from the SIRIUS trial). Am. J. Cardiol. 96(9), 1251–1253 (2005).
  • Escaned J, Baptista J, Di Mario C et al. Significance of automated stenosis detection during quantitative angiography. Insights gained from intracoronary ultrasound imaging. Circulation 94(5), 966–972 (1996).
  • Ahn SG, Yoon J, Sung JK et al. Intravascular ultrasound-guided percutaneous coronary intervention improves the clinical outcome in patients undergoing multiple overlapping drug-eluting stents implantation. Korean Circ. J. 43(4), 231–238 (2013).
  • Iqbal J, Sumaya W, Tatman V et al. Incidence and predictors of stent thrombosis: a single-centre study of 5,833 consecutive patients undergoing coronary artery stenting. EuroIntervention 9(1), 62–69 (2013).
  • Suh J, Park DW, Lee JY et al. The relationship and threshold of stent length with regard to risk of stent thrombosis after drug-eluting stent implantation. JACC Cardiovasc. Interv. 3(4), 383–389 (2010).
  • Colombo A, De Gregorio J, Moussa I et al. Intravascular ultrasound-guided percutaneous transluminal coronary angioplasty with provisional spot stenting for treatment of long coronary lesions. J. Am. Coll. Cardiol. 38(5), 1427–1433 (2001).
  • Eshtehardi P, Cook S, Wandel S et al. Impact of arterial injury on neointimal hyperplasia after implantation of drug-eluting stents in coronary arteries: an intravascular ultrasound study. EuroIntervention 6(4), 467–474 (2010).
  • Hoffmann R, Mintz GS, Mehran R et al. Tissue proliferation within and surrounding Palmaz-Schatz stents is dependent on the aggressiveness of stent implantation technique. Am. J. Cardiol 83(8), 1170–1174 (1999).
  • De Feyter PJ, Kay P, Disco C, Serruys PW. Reference chart derived from post-stent-implantation intravascular ultrasound predictors of 6-month expected restenosis on quantitative coronary angiography. Circulation 100(17), 1777–1783 (1999).
  • Hoffmann R, Mintz GS, Mehran R et al. Intravascular ultrasound predictors of angiographic restenosis in lesions treated with Palmaz-Schatz stents. J. Am. Coll. Cardiol. 31(1), 43–49 (1998).
  • Kasaoka S, Tobis JM, Akiyama T et al. Angiographic and intravascular ultrasound predictors of in-stent restenosis. J. Am. Coll. Cardiol. 32(6), 1630–1635 (1998).
  • Moussa I, Moses J, Di Mario C et al. Does the specific intravascular ultrasound criterion used to optimize stent expansion have an impact on the probability of stent restenosis? Am. J. Cardiol. 83(7), 1012–1017 (1999).
  • Chieffo A, Latib A, Caussin C et al. A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial. Am. Heart J. 165(1), 65–72 (2013).
  • Park SM, Kim JS, Ko YG et al. Angiographic and intravascular ultrasound follow up of paclitaxel- and sirolimus-eluting stent after poststent high-pressure balloon dilation: from the poststent optimal stent expansion trial. Catheter Cardiovasc Interv 77(1), 15–21 (2011).
  • Okabe T, Mintz GS, Buch AN et al. Intravascular ultrasound parameters associated with stent thrombosis after drug-eluting stent deployment. Am. J. Cardiol. 100(4), 615–620 (2007).
  • Zhang Y, Farooq V, Garcia-Garcia HM et al. Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomised trial and ten observational studies involving 19,619 patients. EuroIntervention 8(7), 855–865 (2012).
  • Choi SY, Witzenbichler B, Maehara A et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy. Circ. Cardiovasc. Interv. 4(3), 239–247 (2011).
  • Nishida T, Colombo A, Briguori C et al. Outcome of nonobstructive residual dissections detected by intravascular ultrasound following percutaneous coronary intervention. Am. J. Cardiol. 89(11), 1257–1262 (2002).
  • Bose D, Von Birgelen C, Zhou XY et al. Impact of atherosclerotic plaque composition on coronary microembolization during percutaneous coronary interventions. Basic Res. Cardiol. 103(6), 587–597 (2008).
  • Endo M, Hibi K, Shimizu T et al. Impact of ultrasound attenuation and plaque rupture as detected by intravascular ultrasound on the incidence of no-reflow phenomenon after percutaneous coronary intervention in ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 3(5), 540–549 (2010).
  • Wu X, Mintz GS, Xu K et al. The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial. JACC Cardiovasc. Interv. 4(5), 495–502 (2011).
  • Iijima R, Shinji H, Ikeda N et al. Comparison of coronary arterial finding by intravascular ultrasound in patients with “transient no-reflow” versus “reflow” during percutaneous coronary intervention in acute coronary syndrome. Am. J. Cardiol. 97(1), 29–33 (2006).
  • Hong YJ, Jeong MH, Choi YH et al. Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis. Eur. Heart J. 32(16), 2059–2066 (2011).
  • Califf RM, Abdelmeguid AE, Kuntz RE et al. Myonecrosis after revascularization procedures. J. Am. Coll. Cardiol. 31(2), 241–251 (1998).
  • Prasad A, Singh M, Lerman A, Lennon RJ, Holmes DR Jr, Rihal CS. Isolated elevation in troponin T after percutaneous coronary intervention is associated with higher long-term mortality. J. Am. Coll. Cardiol. 48(9), 1765–1770 (2006).
  • Kim JS, Hong MK, Ko YG et al. Impact of intravascular ultrasound guidance on long-term clinical outcomes in patients treated with drug-eluting stent for bifurcation lesions: data from a Korean multicenter bifurcation registry. Am. Heart J. 161(1), 180–187 (2011).
  • Furukawa E, Hibi K, Kosuge M et al. Intravascular ultrasound predictors of side branch occlusion in bifurcation lesions after percutaneous coronary intervention. Circ. J. 69(3), 325–330 (2005).
  • Park SJ, Kim YH, Park DW et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ. Cardiovasc. Interv. 2(3), 167–177 (2009).
  • Kang SJ, Ahn JM, Song H et al. Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease. Circ. Cardiovasc. Interv. 4(6), 562–569 (2011).
  • Mehran R, Dangas G, Abizaid AS et al. Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. Circulation 100(18), 1872–1878 (1999).
  • Cutlip DE, Baim DS, Ho KK et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation 103(15), 1967–1971 (2001).
  • Nasu K, Tsuchikane E, Katoh O et al. Impact of intramural thrombus in coronary arteries on the accuracy of tissue characterization by in vivo intravascular ultrasound radiofrequency data analysis. Am. J. Cardiol. 101(8), 1079–1083 (2008).
  • Okamura A, Iwakura K, Fujii K. ViewIT improves intravascular ultrasound-guided wiring in coronary intervention of chronic total occlusion. Catheter Cardiovasc. Interv. 75(7), 1062–1066 (2010).
  • Surmely JF, Tsuchikane E, Katoh O et al. New concept for CTO recanalization using controlled antegrade and retrograde subintimal tracking: the CART technique. J. Invasive. Cardiol. 18(7), 334–338 (2006).
  • Rathore S, Katoh O, Tuschikane E, Oida A, Suzuki T, Takase S. A novel modification of the retrograde approach for the recanalization of chronic total occlusion of the coronary arteries intravascular ultrasound-guided reverse controlled antegrade and retrograde tracking. JACC Cardiovasc. Interv. 3(2), 155–164 (2010).
  • Sianos G, Werner GS, Galassi AR et al. Recanalisation of chronic total coronary occlusions: 2012 consensus document from the EuroCTO club. EuroIntervention 8(1), 139–145 (2012).
  • De Korte CL, Hansen HH, Van Der Steen AF. Vascular ultrasound for atherosclerosis imaging. Interface Focus 1(4), 565–575 (2011).
  • Goertz DE, Frijlink ME, Tempel D et al. Contrast harmonic intravascular ultrasound: a feasibility study for vasa vasorum imaging. Invest. Radiol. 41(8), 631–638 (2006).
  • Barger AC, Beeuwkes R 3rd, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N. Med. 310(3), 175–177 (1984).
  • Barger AC, Beeuwkes R 3rd. Rupture of coronary vasa vasorum as a trigger of acute myocardial infarction. Am. J. Cardiol. 66(16), 41G–43G (1990).
  • Goertz DE, Frijlink ME, De Jong N, Van Der Steen AF. Nonlinear intravascular ultrasound contrast imaging. Ultrasound Med. Biol. 32(4), 491–502 (2006).
  • Goertz DE, Frijlink ME, Tempel D et al. Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. Ultrasound Med. Biol. 33(12), 1859–1872 (2007).
  • Frijlink ME, Goertz DE, Vos HJ et al. Harmonic intravascular ultrasound imaging with a dual-frequency catheter. Ultrasound Med. Biol. 32(11), 1649–1654 (2006).
  • Maresca D, Renaud G, Van Soest G et al. Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers. Ultrasound Med. Biol. 39(4), 706–713 (2013).
  • Li BH, Leung AS, Soong A et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Catheter. Cardiovasc. Interv. 81(3), 494–507 (2013).
  • Yang HC, Yin J, Hu C et al. A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(12), 2839–2843 (2010).
  • Garg S, Serruys PW, Van Der Ent M et al. First use in patients of a combined near infra-red spectroscopy and intra-vascular ultrasound catheter to identify composition and structure of coronary plaque. EuroIntervention 5(6), 755–756 (2010).
  • Wentzel JJ, Van Der Giessen AG, Garg S et al. In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy-intravascular ultrasound and multislice computed tomography scan. Circ. Cardiovasc. Imaging 3(6), e6–e7 (2010).
  • Schultz CJ, Serruys PW, Van Der Ent M et al. First-in-man clinical use of combined near-infrared spectroscopy and intravascular ultrasound: a potential key to predict distal embolization and no-reflow? J. Am. Coll. Cardiol. 56(4), 314 (2010).
  • Saeed B, Banerjee S, Brilakis ES. Slow flow after stenting of a coronary lesion with a large lipid core plaque detected by near-infrared spectroscopy. EuroIntervention 6(4), 545 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.