1,020
Views
136
CrossRef citations to date
0
Altmetric
Special Reports

The functional performance of the Argus II retinal prosthesis

&

References

  • Humayun MS, De Juan E Jr, Dagnelie G et al. Visual perception elicited by electrical stimulation of retina in blind humans. Arch. Ophthalmol. 114(1), 40–46 (1996).
  • Humayun MS, Weiland JD, Fujii GY et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res. 43(24), 2573–2581 (2003).
  • Yanai D, Weiland JD, Mahadevappa M et al. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am. J. Ophthalmol. 143(5), 820–827 (2007).
  • De Balthasar C, Patel S, Roy A et al. Factors affecting perceptual thresholds in epiretinal prostheses. Invest. Ophthalmol. Vis. Sci. 49(6), 2303–2314 (2008).
  • Caspi A, Dorn JD, Mcclure KH et al. Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch. Ophthalmol. 127(4), 398–401 (2009).
  • Greenwald SH, Horsager A, Humayun MS et al. Brightness as a function of current amplitude in human retinal electrical stimulation. Invest. Ophthalmol. Vis. Sci. 50(11), 5017–5025 (2009).
  • Humayun MS, Dorn JD, Da Cruz L et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 119(4), 779–788 (2012).
  • Eng JG, Agrawal RN, Tozer KR et al. Morphometric analysis of optic nerves and retina from an end-stage retinitis pigmentosa patient with an implanted active epiretinal array. Invest. Ophthalmol. Vis. Sci. 52(7), 4610–4616 (2011).
  • Zrenner E, Bartz Schmidt KU, Benav H et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. R. Soc. B. 278, 1489–1497 (2011).
  • Stingl K, Bartz-Schmidt KU, Besch D et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B. 280(1757), 20130077 (2013).
  • Zrenner E. Retinal Prosthetics. ARVO Annual Meeting. Seattle, WA, USA, 5–9 May 2013.
  • Wang L, Yang L, Dagnelie G. Virtual wayfinding using simulated prosthetic vision in gaze-locked viewing. Optom. Vis. Sci. 85(11), E1057–E1063 (2008).
  • Blamey PJ, Sinclair NC, Slater K et al. Psychophysics of a suprachoroidal retinal prosthesis. Invest. Ophthalmol. Vis. Sci. ARVO Abstract 1044 (2013).
  • Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest. Ophthalmol. Vis. Sci. 44(12), 5355–5361 (2003).
  • Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest. Ophthalmol. Vis. Sci. 44(12), 5362–5369 (2003).
  • Klauke S, Goertz M, Rein S et al. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest. Ophthalmol. Vis. Sci. 52(1), 449–455 (2011).
  • Wang L, Mathieson K, Kamins TI et al. Photovoltaic retinal prosthesis: Implant fabrication and performance. J. Neural Eng. 9(4), 046014 (2012).
  • Veraart C, Raftopoulos C, Mortimer JT et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 813(1), 181–186 (1998).
  • Duret F, Brelen ME, Lambert V et al. Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor. Neurol. Neurosci. 24(1), 31–40 (2006).
  • Nashold BS Jr. Phosphenes resulting from stimulation of the midbrain in man. Arch. Ophthalmol. 84(4), 433–435 (1970).
  • Pezaris JS, Reid RC. Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc. Natl Acad. Sci. USA 104(18), 7670–7675 (2007).
  • Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196(2), 479–493 (1968).
  • Brindley GS. Effects of electrical stimulation of the visual cortex. Hum. Neurobiol. 1(4), 281–283 (1982).
  • Schmidt EM, Bak MJ, Hambrecht FT et al. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt 2), 507–522 (1996).
  • Dagnelie G, Barnett D, Humayun MS, Thompson RW Jr. Paragraph text reading using a pixelized prosthetic vision simulator: parameter dependence and task learning in free-viewing conditions. Invest. Ophthalmol. Vis. Sci. 47(3), 1241–1250 (2006).
  • Dagnelie G. Retinal implants: emergence of a multidisciplinary field. Curr. Opin. Neurol. 25(1), 67–75 (2012).
  • Fernandes RA, Diniz B, Ribeiro R, Humayun M. Artificial vision through neuronal stimulation. Neurosci. Lett. 519(2), 122–128 (2012).
  • Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelized vision system. J. Opt. Soc. Am. A. 9(5), 673–677 (1992).
  • Cha K, Horch K, Normann RA. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann. Biomed. Eng. 20(4), 439–449 (1992).
  • Da Cruz L, Coley BF, Dorn J et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol. 97(5), 632–636 (2013).
  • Humayun MS, De Juan E Jr, Weiland JD et al. Pattern electrical stimulation of the human retina. Vision Res. 39(15), 2569–2576 (1999).
  • Behrend MR, Ahuja AK, Humayun MS, Chow RH, Weiland JD. Resolution of the epiretinal prosthesis is not limited by electrode size. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 436–442 (2011).
  • Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 22(5), 607–655 (2003).
  • Renier L, De Volder AG, Rauschecker JP. Cortical plasticity and preserved function in early blindness. Neurosci. Biobehav. Rev. doi:10.1016/j.neubiorev.2013.01.025 (2013) ( Epub ahead of print).
  • Stingl K, Bach M, Bartz-Schmidt KU et al. Safety and efficacy of subretinal visual implants in humans: methodological aspects. Clin. Exp. Optom. 96(1), 4–13 (2013).
  • House WF. Artificial hearing: an implanted auditory prosthesis for treatment of total binaural deafness. Trans. Am. Soc. Artif. Intern. Organs. 30, 11–14 (1984).
  • Fishman KE, Shannon RV, Slattery WH. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J. Speech Lang. Hear. Res. 40(5), 1201–1215 (1997).
  • Wilson BS, Finley CC, Lawson DT et al. Better speech recognition with cochlear implants. Nature 352(6332), 236–238 (1991).
  • Srinivasan AG, Padilla M, Shannon RV, Landsberger DM. Improving speech perception in noise with current focusing in cochlear implant users. Hear. Res. 299, 29–36 (2013).
  • Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu. Rev. Biomed. Eng. 7, 361–401 (2005).
  • Mccarthy C, Barnes N, Lieby P. Ground surface segmentation for navigation with a low resolution visual prosthesis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 4457–4460 (2011).
  • Wilke R, Gabel VP, Sachs H et al. Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. Invest. Ophthalmol. Vis. Sci. 52(8), 5995–6003 (2011).
  • Horsager A, Greenberg RJ, Fine I. Spatiotemporal interactions in retinal prosthesis subjects. Invest. Ophthalmol. Vis. Sci. 51(2), 1223–1233 (2010).
  • Wilke R, Greppmaier U, Porubska K, Zrenner E. Fading of perception in retinal implants is a function of time and space between sites of stimulation. Invest. Ophthalmol. Vis. Sci. 52, ARVO Abstract 458 (2011).
  • Horsager A, Boynton GM, Greenberg RJ, Fine I. Temporal interactions during paired-electrode stimulation in two retinal prosthesis subjects. Invest. Ophthalmol. Vis. Sci. 52(1), 549–557 (2011).
  • Lauritzen TZ, Harris J, Mohand-Said S et al. Reading visual braille with a retinal prosthesis. Front. Neurosci. 6, 168 (2012).
  • Nanduri D, Humayun MS, Greenberg RJ, Mcmahon MJ, Weiland JD. Retinal prosthesis phosphene shape analysis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 1785–1788 (2008).
  • Nanduri D, Fine I, Horsager A et al. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Invest. Ophthalmol. Vis. Sci. 53(1), 205–214 (2012).
  • Dorn JD, Ahuja AK, Caspi A et al. The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol. 131(2), 183–189 (2013).
  • Perez Fornos A, Sommerhalder J, Da Cruz L et al. Temporal properties of visual perception on electrical stimulation of the retina. Invest. Ophthalmol. Vis. Sci. 53(6), 2720–2731 (2012).
  • Stronks HC, Barry MP, Dagnelie G. Electrically elicited visual evoked potentials (eVEPs) in Argus II retinal implant wearers. Invest. Ophthalmol. Vis. Sci. 54(6), 3891–3901 (2013).
  • Chader GJ, Weiland J, Humayun MS. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog. Brain Res. 175, 317–332 (2009).
  • Barry MP, Dagnelie G. Use of the Argus II retinal prosthesis to improve visual guidance of fine hand movements. Invest. Ophthalmol. Vis. Sci. 53(9), 5095–5101 (2012).
  • Jackson AJ, Bailey IL. Visual acuity. Optom. Pract. 5, 53–70 (2004).
  • Geller AM, Sieving PA, Green DG. Effect on grating identification of sampling with degenerate arrays. J. Opt. Soc. Am. A 9(3), 472–477 (1992).
  • Dorn JD, Geruschat D, Dagnelie G et al. Functional vision and quality of life of Argus® II retinal prosthesis system users as measured by the functional low-vision observer rated assessment (FLORA). Invest. Ophthalmol. Vis. Sci. 53, ARVO Abstract 5511 (2012).
  • Zeng F-G. Auditory prostheses: past, present, and future. In: Cochlear Implants. Auditory Prostheses and Electric Hearing. Zeng F-G, Popper AN, Fay RR ( Eds). Springer-Verlag, NY, USA (2004).
  • Stanga PE, Sahel JA, Mohand-Said S et al. Face Detection using the Argus® II Retinal Prosthesis System. Invest. Ophthalmol. Vis. Sci. 54, ARVO Abstract 1766 (2013).
  • Sahel JA, Mohand-Said S, Stanga PE, Caspi A, Greenberg RJ. Acuboost™: enhancing the maximum acuity of the Argus II Retinal Prosthesis System. Invest. Ophthalmol. Vis. Sci. 54, ARVO Abstract 1389 (2013).
  • Stanga PE, Sahel JA, Dacruz L et al. Patients blinded by outer retinal dystrophies are able to perceive simultaneous colors using the Argus® II retinal prosthesis system. Invest. Ophthalmol. Vis. Sci. 53, ARVO Abstract 6952 (2012).
  • Kolb H. Simple anatomy of the retina. In: Webvision: The Organization of The Retina And Visual System. Kolb H, Nelson R, Fernandez E, Jones B ( Eds). University of Utah, Utah, USA (2011).
  • Kandagor V, Cela CJ, Charlene A et al. In situ characterization of stimulating microelectrode arrays: study of an idealized structure based on Argus II retinal implants. In: Implantable Neural Prostheses 2. Zhou DD, Greenbaum E ( Eds). Springer, NY, USA (2010).
  • Mather G. The physics of vision - light and the eye. Foundations of Perception. Psychology Press, Hove, East Sussex, UK, 144–177 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.