83
Views
27
CrossRef citations to date
0
Altmetric
Special Report

Visual prosthetics 2006: assessment and expectations

Pages 315-325 | Published online: 09 Jan 2014

References

  • Radtke ND, Aramant RB, Seiler MJ, Petry HM, Pidwell D. Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa. Arch. Ophthalmol.122, 1159–1165 (2004).
  • Buchel C, Price C, Frackowiak RS, Friston K. Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain121(Pt 3), 409–419 (1998).
  • Fine I, Wade AR, Brewer AA et al. Long-term deprivation affects visual perception and cortex. Nature Neurosci.6, 915–916 (2003).
  • Stevenson MR, Hart PM, Montgomery AM, McCulloch DW, Chakravarthy U. Reduced vision in older adults with age related macular degeneration interferes with ability to care for self and impairs role as carer. Br. J. Ophthalmol.88, 1125–1130 (2004).
  • Humayun MS, de Juan E Jr, Dagnelie G et al. Visual perception elicited by electrical stimulation of retina in blind humans. Arch. Ophthalmol.114, 40–46 (1996).
  • Humayun MS, Prince M, deJuan E et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci.40, 143–148 (1999).
  • Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp. Eye Res.81, 123–137 (2005).
  • Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res.22, 607–655 (2003).
  • Palanker D, Huie P, Vankov A et al. Migration of retinal cells through a perforated membrane: implications for a high-resolution prosthesis. Invest. Ophthalmol. Vis. Sci.45, 3266–3270 (2004).
  • Peterman MC, Bloom DM, Lee C et al. Localized neurotransmitter release for use in a prototype retinal interface. Invest. Ophthalmol. Vis. Sci.44, 3144–3149 (2003).
  • Peterman MC, Mehenti NZ, Bilbao KV et al. The Artificial Synapse Chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif. Organs27, 975–985 (2003).
  • Eckmiller R, Neumann D, Baruth O. Tunable retina encoders for retina implants: why and how. J. Neural. Eng.2, S91–S104 (2005).
  • Kuritz T, Lee I, Owens ET, Humayun M, Greenbaum E. Molecular photovoltaics and the photoactivation of mammalian cells. IEEE Trans. Nanobioscience4,196–200 (2005).
  • Hu Z, Zhou DM, Greenberg R, Thundat T. Nanopowder molding method for creating implantable high-aspect-ratio electrodes on thin flexible substrates. Biomaterials27, 2009–2017 (2006).
  • Warren DJ, Fernandez E, Normann RA. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience105, 19–31 (2001).
  • Schmidt EM, Bak MJ, Hambrecht FT et al. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain119, 507–522 (1996).
  • Bradley DC, Troyk PR, Berg JA et al. Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol.93, 1659–1670 (2005).
  • McIntyre CC, Grill WM. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol.88, 1592–1604 (2002).
  • Liu W, Sivaprakasam M, Singh PR, Bashirullah R, Wang G. Electronic visual prosthesis. Artif. Organs27, 986–995 (2003).
  • Chow AY, Peachey N. The subretinal microphotodiode array retinal prosthesis II. Ophthalmic Res.31, 246 (1999).
  • Volker M, Shinoda K, Sachs H et al.In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography. Graefes Arch. Clin. Exp. Ophthalmol.242(9), 792–799 (2004).
  • Margalit E, Maia M, Weiland JD et al. Retinal prosthesis for the blind. Surv. Ophthalmol.47, 335–356 (2002).
  • Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu. Rev. Biomed. Eng.7, 361–401 (2005).
  • Humayun MS, Weiland JD, Fujii GY et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res.43, 2573–2581 (2003).
  • Mahadevappa M, Weiland JD, Yanai D et al. Perceptual thresholds and electrode impedance in three retinal prosthesis subjects. IEEE Trans. Neural Syst. Rehabil. Eng.13, 201–206 (2005).
  • Rizzo JF III, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest. Ophthalmol. Vis. Sci.44, 5362–5369 (2003).
  • Rizzo JF III, Wyatt J, Loewenstein J, Kelly S, Shire D. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest. Ophthalmol. Vis. Sci.44, 5355–5361 (2003).
  • Loewenstein JI, Montezuma SR, Rizzo JF III. Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy. Arch. Ophthalmol.122, 587–596 (2004).
  • Yamauchi Y, Franco LM, Jackson DJ et al. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit. J. Neural. Eng.2, S48–S56 (2005).
  • Hornig R, Laube T, Walter P et al. A method and technical equipment for an acute human trial to evaluate retinal implant technology. J. Neural. Eng.2, S129–S134 (2005).
  • Stieglitz T. Considerations on surface and structural biocompatibility as prerequisite for long-term stability of neural prostheses. J. Nanosci. Nanotechnol.4, 496–503 (2004).
  • Walter P, Kisvarday ZF, Gortz M et al. Cortical activation via an implanted wireless retinal prosthesis. Invest. Ophthalmol. Vis. Sci.46, 1780–1785 (2005).
  • Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA. Localized chemical release from an artificial synapse chip. Proc. Natl. Acad. Sci. USA101, 9951–9954 (2004).
  • Iezzi R, Walraven T, Abrams G. Toxicological profiles of the phototriggerable molecules MNI and MCNI glutamate for use in visual prostheses. Invest. Ophthalmol. Vis. Sci.45, ARVO E-abstr. 4221 (2004).
  • Yagi T, Watanabe M, Ohnishi Y, Okuma S, Mukai T. Biohybrid retinal implant: research and development update in 2005. Proceedings of the 2nd IEEE International Conference on Neural Engineering. Washington DC, USA, 248–251 (2005).
  • Sakaguchi H, Fujikado T, Fang X et al. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J. Ophthalmol.48, 256–261 (2004).
  • Baac H, Lee J-H, Seo J-M et al. Submicron-scale topographical control of cell growth using holographic surface relief grating. Mater. Sci. Eng. C24, 209–212 (2004).
  • Lee CJ, Oh SJ, Song JK, Kim SJ. Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material. Mater. Sci. Eng. C24, 265–268 (2004).
  • Seo J-M, Kim SJ, Chung H et al. Biocompatibility of polyimide microelectrode array for retinal stimulation. Mater. Sci. Eng. C24, 185–189 (2004).
  • Chowdhury V, Morley JW, Coroneo MT. Feasibility of extraocular stimulation for a retinal prosthesis. Can. J. Ophthalmol.40, 563–572 (2005).
  • Dokos S, Suaning GJ, Lovell NH. A bidomain model of epiretinal stimulation. IEEE Trans. Neural Syst. Rehabil. Eng.13, 137–146 (2005).
  • Hallum LE, Suaning GJ, Lovell NH. Contribution to the theory of prosthetic vision. ASAIO J.50, 392–396 (2004).
  • Suaning GJ, Lovell NH. CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry. IEEE Trans. Biomed. Eng.48, 248–260 (2001).
  • Gekeler F, Zrenner E. [Status of the subretinal implant project. An overview]. (German) Ophthalmologe102, 941–949 (2005).
  • Feili D, Schuettler M, Doerge T, Kammer S, Stieglitz T. Encapsulation of organic field effect transistors for flexible biomedical microimplants. Sens. Actuators A Phys.120, 101–109 (2005).
  • Brelen ME, Duret F, Gerard B, Delbeke J, Veraart C. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J. Neural. Eng.2, S22–S28 (2005).
  • Delbeke J, Oozeer M, Veraart C. Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res.43, 1091–1102 (2003).
  • Veraart C, Duret F, Brelen M, Oozeer M, Delbeke J. Vision rehabilitation in the case of blindness. Expert Rev. Med. Devices1, 139–153 (2004).
  • Fang X, Sakaguchi H, Fujikado T et al. Electrophysiological and histological studies of chronically implanted intrapapillary microelectrodes in rabbit eyes. Graefes Arch. Clin. Exp. Ophthalmol.244(3), 364–375 (2006).
  • Horton JC, Hoyt WF. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch. Ophthalmol.109, 816–824 (1991).
  • Fernandez E, Alfaro A, Tormos JM et al. Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res. Brain Res. Protoc.10, 115–124 (2002).
  • Shelepin YE, Bondarko VM. Resolving ability and image discretization in the visual system. Neurosci. Behav. Physiol.34, 147–157 (2004).
  • Troyk P, Bak M, Berg J et al. A model for intracortical visual prosthesis research. Artif. Organs27, 1005–1015 (2003).
  • Fernandez E, Pelayo F, Romero S et al. Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J. Neural. Eng.2, R1–R12 (2005).
  • Coulombe J, Carniguian S, Sawan M. A power efficient electronic implant for a visual cortical neuroprosthesis. Artif. Organs29, 233–238 (2005).
  • Dobelle WH, Mladejovsky MG, Girvin JP. Artificial vision for the blind: electrical stimulation of the cortex offers hope for a functional prosthesis. Science183, 1–39 (1978).
  • Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J.46, 3–9 (2000).
  • Chow AY, Chow VY, Packo KH et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch. Ophthalmol.122, 460–469 (2004).
  • Pardue MT, Phillips MJ, Yin H et al. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J. Neural. Eng.2, S39–S47 (2005).
  • Del Priore LV. Effect of sham surgery on retinal function after subretinal transplantation of the artificial silicone retina. Arch. Ophthalmol.123, 1156; author reply 1156–1157 (2005).
  • Zaraska W, Thor P, Lipinski M et al. Design and fabrication of neurostimulator implants – selected problems. Microelectronics Reliability45, 1930–1934 (2005).
  • Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods148, 1–18 (2005).
  • Buffoni LX, Coulombe J, Sawan M. Image processing strategies dedicated to visual cortical stimulators: a survey. Artif. Organs29, 658–664 (2005).
  • Marc RE, Jones BW. Retinal remodeling in inherited photoreceptor degenerations. Mol. Neurobiol.28, 139–147 (2003).
  • Pagon RA. Retinitis pigmentosa. Surv. Ophthalmol.33, 137–177 (1988).
  • Heckenlively JR, Yoser SL, Friedman LH, Oversier JJ. Clinical findings and common symptoms in retinitis pigmentosa. Am. J. Ophthalmol.105, 504–511 (1988).
  • Cha K, Horch K, Normann RA. Simulation of a phosphene-based visual field: visual acuity in a pixelized system. Ann. Biomed. Eng.20, 439–449 (1992).
  • Cha K, Horch KW, Normann RA. Mobility performance with a pixelized vision system. Vision Res.32, 1367–1372 (1992).
  • Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelized vision system. J. Opt. Soc. Am. A9, 673–677 (1992).
  • Fornos AP, Sommerhalder J, Rappaz B, Safran AB, Pelizzone M. Simulation of artificial vision, III: do the spatial or temporal characteristics of stimulus pixelization really matter? Invest. Ophthalmol. Vis. Sci.46, 3906–3912 (2005).
  • Sommerhalder J, Oueghlani E, Bagnoud M et al. Simulation of artificial vision: I. Eccentric reading of isolated words, and perceptual learning. Vision Res.43, 269–283 (2003).
  • Sommerhalder J, Rappaz B, de Haller R et al. Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Res.44, 1693–1706 (2004).
  • Hallum LE, Suaning GJ, Taubman DS, Lovell NH. Simulated prosthetic visual fixation, saccade, and smooth pursuit. Vision Res.45, 775–788 (2005).
  • Dagnelie G, Barnett GD, Humayun M, Thompson RW Jr. Paragraph text reading using a pixelized prosthetic vision simulator: parameter dependence and task learning in free-viewing conditions. Invest. Ophthalmol. Vis. Sci.47, 1241–1250 (2006).
  • Dagnelie G, Walter M, Yang L. Playing checkers: detection and eye-hand coordination in simulated prosthetic vision. J. Modern Optics (2006) (In press).
  • Hayes JS, Yin VT, Piyathaisere D et al. Visually guided performance of simple tasks using simulated prosthetic vision. Artif. Organs27, 1016–1028 (2003).
  • Capelle C, Trullemans C, Arno P, Veraart C. A real-time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Trans Biomed. Eng.45, 1279–1293 (1998).
  • Renier L, Collignon O, Poirier C et al. Cross-modal activation of visual cortex during depth perception using auditory substitution of vision. NeuroImage26, 573–580 (2005).
  • Kupers R, Ptito M. ‘Seeing’ through the tongue: cross-modal plasticity in the congenitally blind. Int. Congr. Ser.1270, 79–84 (2004).
  • Bach-y-Rita P, Kercel SW. Sensory substitution and the human–machine interface. Trends Cogn. Sci.7, 541–546 (2003).
  • Zelek JS. Seeing by touch (haptics) for wayfinding. Int. Congr. Ser.1282, 1108–1112 (2005).

Websites

  • The Boston Retinal Implant Project www.bostonretinalimplant.org/
  • Doheny Eye Institute www.usc.edu/hsc/doheny/
  • Second Sight www.2-sight.com
  • Kresge Eye Institute www.med.wayne.edu/kresgeeye/ligon/
  • Palanker Group: BioMedical Physics and Ophthalmic Technologies www.stanford.edu/∼palanker/lab/retinalpros.html
  • ‘Bionic’ Eye www.svec.uh.edu/BIONIC.html
  • Universitats – Augenklinik Aachen www.eyenet-aachen.de/05–07–1-implants.html#epi_ret
  • IIP Technologies www.iip-tec.com/english/index.php4
  • Retina Implant www.retina-implant.de/
  • Nano Bioelectronics and Systems Research Center http://nanobio.snu.ac.kr/eng/index.html
  • Australian Vision Prosthesis Group http://bionic.gsbme.unsw.edu.au/
  • Tokyo Institute of Technology: Shimizu and Yagi Laboratory www.io.mei.titech.ac.jp/eindex.html
  • Accueil UCL: Gren www.md.ucl.ac.be/gren/intro.html
  • Sight Restoration For Individuals With Profound Blindness www.bioen.utah.edu/cni/projects/ blindness.htm
  • The Laboratory of Neuroprosthetic Research http://neural.iit.edu/index.htm
  • Cortical Neuroproshesis for the Blind http://cortivis.umh.es/
  • Polystim neurotechnologies Laboratory www.polystim.polymtl.ca/
  • Gislin Dagnelie http://lions.med.jhu.edu/lvrc/gd.htm
  • The BAT ‘K’ Sonar-Cane www.batforblind.co.nz/
  • Vision Technology for the Totally Blind www.seeingwithsound.com/voice.htm
  • Tongue Display Technology http://kaz.med.wisc.edu/Publicity/ Synopsis.html
  • Advanced displays for the blind www.abtim.de/home__e_/home__e_.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.