166
Views
24
CrossRef citations to date
0
Altmetric
Review

Biological skin substitutes for wound cover and closure

, &
Pages 373-385 | Published online: 09 Jan 2014

References

  • Horch RE, Kopp J, Kneser U, Beier J, Bach AD. Tissue engineering of cultured skin substrates.J. Cell. Mol. Med.9(3), 592–608 (2005).
  • Jones I, Currie L, Martin R. A guide to biological skin substitutes.Br. J. Plast. Surg.55, 185–193 (2002).
  • Boyce ST. Design principles for composition and performance of cultured skin substitutes.Burns27, 523–533 (2001).
  • Trent JT, Falabella A, Eaglstein WH, Kirsner RS. Venous ulcers: pathophysiology and treatment options.Ostomy Wound Manage.51(5), 38–54 (2005).
  • Del Rio M, Gache Y, Jorcano JL, Meneguzzi G, Larcher F. Current approaches and perspective in human keratinocyte-based gene therapies.Gene Ther.11, S57–S63 (2004).
  • Haake A, Scott GA, Holbrook KA. Structure and function of the skin: overview of the epidermis and dermis. In:The Biology of the Skin. Freinkel RL, Woodley DT (Eds), The Parthenon Publishing Group Inc., NY, USA, 19–45 (2001).
  • Sorrell JM, Caplan AI. Fibroblast heterogeneity: more than skin deep.J. Cell Sci.117(5), 667–675 (2004).
  • Silver FH, Freeman JW, DeVore D. Viscoelastic properties of human skin and processed dermis.Skin Res. Technol.7(1), 18–23 (2001).
  • Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing.Front. Biosci.9, 283–289 (2004).
  • Werner S, Grose R. Regulation of wound healing by growth factors and cytokines.Physiol. Rev.83, 835–870 (2003).
  • Grazul-Bilska AT, Johnson ML, Bilski JJ et al. Wound healing: the role of growth factors.Drugs Today39(10), 787–800 (2003).
  • Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing.Exp. Cell Res.304, 274–286 (2005).
  • auf dem Keller U, Krampert M, Kumin A, Braun S, Werner S. Keratinocyte growth factor: effects on keratinocytes and mechanisms of action.Eur. J. Cell Biol.83(11–12), 607–612 (2004).
  • Greenwald SE, Berry CL. Improving vascular grafts: the importance of mechanical and hemodynamic properties.J. Pathol.190, 292–299 (2000).
  • Lee KH. Tissue-engineered human living skin substitutes: development and clinical application.Yonsei Med. J.41(6), 774–779 (2000).
  • O’Brien FJ, Harley BA, Yanna IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds.Biomaterials26(4), 433–441 (2005).
  • Badiavas EV, Paquette D, Carson P, Falanga V. Human chronic wounds treated with bioengineered skin: histologic evidence of host–graft interactions.J. Am. Acad. Dermatatol.46(4), 524–530 (2002).
  • Atiyeh BS, Shady NH, Gunn SW. New technologies for burn wound closure and healing – review of the literature.Burns31, 944–956 (2005).
  • Snyder RJ. Treatment of nonhealing ulcers with allografts.Clin. Dermatol.23, 388–395 (2005).
  • Masahiro KO, Taya M. Development of culture techniques of keratinocytes for skin graft production.Adv. Biochem. Eng. Biotechnol.91, 135–169 (2004).
  • Kearney JN. Guidelines on processing and clinical use of skin allografts.Clin. Dermatol.23, 357–364 (2005).
  • Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials.Clin. Dermatol.23, 403–412 (2005).
  • Sibbald RG, Torrance GW, Walker V, Attard C, MacNeil P. Cost-effectiveness of Aplifraf in the treatment of venous leg ulcers.Ostomy Wound Manage.47(8), 36–46 (2001).
  • Redekop WK, McDonnell J, Verboom P, Lovas K, Kalo Z. The cost effectiveness of Apligraf treatment of diabetic foot ulcers.Pharmacoeconomics21(16), 1171–1183 (2003).
  • Auger FA, Berthod F, Moulin V, Pouliot R, Germain L. Tissue-engineered skin substitutes: from in vitro constructs to in vivo applications.Biotechnol. Appl. Biochem.39, 263–275 (2004).
  • Balasubramani M, Kumar TR, Babu M. Skin substitutes: a review.Burns27, 534–544 (2001).
  • Shakespeare PG. The role of skin substitutes in the treatment of burn injuries.Clin. Dermatol.23, 413–418 (2005).
  • Wainwright D, Madden M, Luterman A et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns.J. Burn Care Rehabil.17, 124–136 (1996).
  • Lattari V, Jones LM, Varcelotti JR et al. The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases.J. Burn Care Rehabil.18, 147–155 (1997).
  • Barrett JP, Dziewulski P, McCauley RL, Herndon DN, Desai MH. Dermal reconstruction of a class IV calvarial burn with decellularized human dermis.Burns25, 459–462 (1999).
  • Gryskiewicz JM. Waste not, want not: the use of Alloderm in secondary rhinoplasy.Plast. Reconstr. Surg.116(7), 1999–2004 (2005).
  • Li TG, Shorr N, Goldberg RA. Comparison of the efficacy of hard palate grafts with acellular human dermis grafts in lower eyelid surgery.Plast. Reconstr. Surg.116(3), 873–880 (2005).
  • Haynes DS, Vos JD, Labadie RF. Acellular allograft dermal matrix for tympanoplasy.Curr. Opin. Otolaryngol. Head Neck Surg.13(5), 283–286 (2005).
  • Omar AA, Mavor AI, Jones AM, Homer-Vanniasinkam S. Treatment of venous leg ulcers with Dermagraft.Eur J. Vasc. Endovasc. Surg.27(6), 666–672 (2004).
  • Marston WA, Hanft J, Norwood P, Pollak R; Dermagraft Diabetic Foot ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial.Diabetes Care26(6), 1701–1715 (2003).
  • Hansbrough JF, Doré C, Hansbrough WB. Clinical trials of a living dermal tissue replacement beneath meshed, split-thickness skin grafts on excised burn wounds.J. Burn Care Rehabil.13, 519–529 (1992).
  • Browne AC, Vearncombe M, Sibbald RG. High bacterial load in asymptomatic diabetic patients with neurotrophic ulcers retards wound healing after application of Dermagraft.Ostomy Wound Manage.47(10), 44–49 (2001).
  • Brown-Etris M, Cutshall WD, Hiles MC. A new biomaterial derived from small intestine submucosa and developed into a wound matrix device.Wounds14(4), 150–166 (2002).
  • McDevitt CA, Wildey GM, Cutrone RM. Transforming growth factor-β1 in a sterilized tissue derived from the pig small intestine submucosa.J. Biomed. Mater. Res. A67, 637–640 (2003).
  • Hodde JP, Ernst DM, Hiles MC. An investigation of the long-term bioactivity of endogenous growth factor in OASIS wound matrix.J. Wound Care14(1), 23–25 (2005).
  • Santucci RA, Barber TD. Resorbable extracellular matrix grafts in urologic reconstruction.Int. Braz. J. Urol.31(3), 192–203 (2005).
  • Demling RH, Niezgoda JA, Haraway GD, Mostow EN. Small intestinal submucosa wound matrix and full-thickness venous ulcers: preliminary results.Wounds16(1), 18–22 (2004).
  • Mostow EN, Haraway DO, Dalsing M, Hodde JP, King D, OASIS Venus Study Group. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial.J. Vasc. Surg.41(5), 837–843 (2005).
  • Niezgoda JA, Van Gils CC, Frykberg RG, Hodde JP, OASIS Diabetic Ulcer Study Group. Randomized clinical trail comparing OASIS wound matrix to Regranex gel diabetic ulcers.Adv. Skin Wound Care18(5), 258–266 (2005).
  • Lal S, Barrow RE, Wolf SE et al. Biobrane improves wound healing in burned children without increased risk of infection.Shock14(30), 318–319 (2000).
  • Yannas IV, Burke JF, Orgill DP. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin.Science215, 174–176 (1982).
  • Burke JF, Yannas IV, Quinby WS, Bondoc CC, Jung WK. Successful use off a physiologically acceptable artificial skin in the treatment of extensive burn injury.Ann. Surg.194, 413–428 (1981).
  • Ruszczak Z. Effect of collagen matrices on dermal wound healing.Adv. Drug Deliv. Rev.55(12), 1595–1611 (2003).
  • Heimbach D, Luterman A, Burke J et al. Artificial dermis for major burns: multi-center randomized clinical trial.Ann. Surg.208, 313–320 (1998).
  • Sheridan RL, Hegarty M, Tompkins RG, Burke JF. Artificial skin in massive burns – results to ten years.Eur. J. Plast. Surg.17, 91–93 (1994).
  • Stern R, McPherson M, Longaker MT. Histologic study of artificial skin used in the treatment of full-thickness thermal injury.J. Burn Care Rehabil.11(1), 7–13 (1990).
  • Komorowska-Timek E, Gabriel A, Bennett DC et al. Artificial dermis as an alternative for coverage of complex scalp defects following excision of malignant tumors.Plast. Reconstr. Surg.115(4), 1010–1017 (2005).
  • Jeschke MG, Rose C, Angele P, Fuchtmeier B, Nerlich MN, Bolder U. Development of new reconstructive techniques: use of Integra in combination with fibrin glue and negative-pressure therapy for reconstruction of acute and chronic wounds.Plast. Reconstr. Surg.113(2), 525–530 (2004).
  • Edlich RF, Winters KL, Woodard CR, Britt LD, Long WB III. Massive soft tissue infections: necrotizing fasciitis and purpura fulminans.J. Long Term Eff. Med. Implants15(1), 57–65 (2005).
  • Schulz JT III, Tompkins RG, Burke JF. Artificial skin.Annu. Rev. Med.51, 231–244 (2000).
  • Kremer M, Lang E, Berger AC. Evaluation of dermal–epidermal skin equivalents (‘composite-skin’) of human keratinocytes in a collagen–glycosaminoglycan matrix (Integra artificial skin).Br. J. Plast. Surg.53(6) 459–465 (2000).
  • Hansbrough JF, Mozingo DW, Kealey GP, Davis M, Gidner A, Gentzkow GD. Clinical trails of a biosynthetic temporary skin replacement, Dermagraft-Transitional Covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds.J. Burn Care Rehabil.18(1), 43–51 (1997).
  • Purdue GF, Hunt JL, Still JM Jr et al. A multicenter clinical trial of a biosynthetic skin replacement, Dermagraft-TC, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds.J. Burn Care Rehabil.18(1), 52–57 (1997).
  • Lukish JR, Eichelberger MR, Newman KD et al. The use of a bioactive skin substitute decreases length of stay for pediatric burn patients.J. Pediatr. Surg.36(8), 1118–1121 (2001).
  • Kumar RJ, Kimble RM, Boots R, Pegg SP. Treatment of partial-thickness burns: a prospective, randomized trial using TransCyte™.ANZ J. Surg.74, 622–626 (2004).
  • Hardin-Young J, Parenteau N. Bilayered skin constructs. In:Methods of Tissue Engineering. Atala A, Lanza RP (Eds), Academic Press, CA, USA, 1177–1188 (2002).
  • Falanga V, Margolis DJ, Alvarez O et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent.Arch. Dermatol.134, 293–300 (1998).
  • Sabolinkski ML, Alvarez O, Auletta M, Mulder G, Parenteau NL. Cultured skin as a “smart material” for healing wounds: experience in venous ulcers.Biomaterials17, 311–320 (1996).
  • Curran MP, Plosker GL. Bilayered bioengineered skin substitute (Apligraf): a review of its use in the treatment of venous leg ulcers and diabetic foot ulcers.BioDrugs16, 439–455 (2002).
  • Falabella AF, Valencia IC, Eaglstein WH et al. Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds.Arch. Dermatol.136, 1225–1230 (2000).
  • Fivenson DP, Scherschun L, Choueair M, KuKuruga D, Young J, Shwayder T. Graftskin therapy in epidermolysis bullosa.J. Am. Acad. Dermatol.48(6), 886–892 (2003).
  • Abai B, Thayer D, Glat PM. Two cases of traumatic wounds in patients with Ehlers–Danlos Syndrome successfully treated with a bioengineered skin equivalent.Wounds15(6), 201–207 (2003).
  • Eaglestein WH, Iriondo M, Laszlo K. A composite skin substitute (Graftskin) for surgical wounds. A clinical experience.Dermatol. Surg.21, 839–843 (1995).
  • Waymack P, Duff RG, Sabolinski M. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds.Burns26, 609–619 (2000).
  • Griffiths M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in acute human wounds.Tissue Eng.10(7–8), 1180–1195 (2004).
  • Schonfeld WH, Villa KF, Fasenau JM, Mazonson PD, Falanga V. An economic assessment of Apligraf (Graftskin) for the treatment of hard-to-heal venous leg ulcers.Wound Repair Regen.8(4), 251–257 (2000).
  • Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells.Cell6, 331–343 (1975).
  • Lam PK, Chan ES, Liew CT, Lau CH, Yen SC, King WW. Combination of a new composite biocompatible skin graft on the neodermis of artificial skin in an animal model.ANZ J. Surg.72, 360–363 (2002).
  • Lobmann R, Pittasch D, Mühlen I, Lehnert H. Autologous human keratinocytes culture on membranes composed of benzyl ester of hyaluronic acid for grafting in nonhealing diabetic foot leasions: a pilot study.J. Diabetes Complicat.17(4), 199–204 (2003).
  • Eisenbud D, Huang NF, Luke S, Silberklang S. Skin substitutes in wound healing: current status and challenges.Wounds16(1), 2–17 (2004).
  • Compton CC. Current concepts in pediatric burn care: the biology of cultured epithelial autografts: an eight-year study in pediatric burn patients.Eur. J. Pediatr. Surg.2, 216–222 (1992).
  • Carsin H, Ainaud P, Le Bever H et al. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients.Burns26, 379–387 (2000).
  • Swope VB, Supp AP, Boyce ST. Regulation of cutaneous pigmentation by titration of human melanocytes in cultured skin substitutes grafted to athymic mice.Wound Repair Regen.10(6), 378–386 (2002).
  • Jones I, James SE, Rubin P, Martin R. Upward migration of cultured autologous keratinocytes in Integra artificial skin: a preliminary report.Wound Repair Regen.11(2), 132–138 (2003).
  • Izumi K, Feinberg SE, Terashi H, Marcelo CL. Evaluation of transplanted tissue-engineered oral mucosa equivalents in severe combined immunodeficient mice.Tissue Eng.9(1), 163–174 (2003).
  • Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth.J. Biomater. Sci. Polym. Ed.9(8), 863–878 (1998).
  • Supp DM, Karpinski AC, Boyce ST. Vascular endothelial growth factor overexpression increases vascularization by murine but not human endothelial cells in cultured skin substitutes grafted to athymic mice.J. Burn Care Rehabil.25(4), 337–345 (2004).
  • Hüsing B, Bürken B, Gaisser S. Human tissue engineered products – today’s market and future prospects. Fraunhofer Institute for Systems Innovation and Research. Karlsruhe, Germany (2004).

Website

  • American Burn Association. Burn incidence and treatment in the USA: 2000 fact sheet www.ameriburn.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.