286
Views
59
CrossRef citations to date
0
Altmetric
Review

Emerging nanomedicine opportunities with perfluorocarbon nanoparticles

, , , &
Pages 137-145 | Published online: 09 Jan 2014

References

  • Winter PM, Caruthers SD, Wickline SA, Lanza GM. Molecular imaging by MRI. Curr. Cardiol. Rep.8(1), 65–69 (2006).
  • Lanza GM, Winter P, Caruthers S et al. Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Curr. Pharm. Biotechnol.5(6), 495–507 (2004).
  • Arbab AS, Liu W, Frank JA. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev. Med. Devices3(4), 427–439 (2006).
  • Lanza GM, Winter PM, Caruthers SD et al. Magnetic resonance molecular imaging with nanoparticles. J. Nucl. Cardiol.11(6), 733–743 (2004).
  • Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology182(2), 381–385 (1992).
  • Kanno S, Wu YJ, Lee PC et al. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation104(8), 934–938 (2001).
  • Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation103(3), 415–422 (2001).
  • Kooi ME, Cappendijk VC, Cleutjens KB et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation107(19), 2453–2458 (2003).
  • Kraitchman DL, Heldman AW, Atalar E et al.In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation107(18), 2290–2293 (2003).
  • Litovsky S, Madjid M, Zarrabi A et al. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-α, interleukin-1β, and interferon-γ. Circulation107(11), 1545–1549 (2003).
  • Saleh A, Schroeter M, Jonkmanns C et al.In vivo MRI of brain inflammation in human ischaemic stroke. Brain127(Pt 7), 1670–1677 (2004).
  • Wu EX, Tang H, Wong KK, Wang J. Mapping cyclic change of regional myocardial blood volume using steady-state susceptibility effect of iron oxide nanoparticles. J. Magn. Reson. Imaging19(1), 50–58 (2004).
  • Sipkins DA, Cheresh DA, Kazemi MR et al. Detection of tumor angiogenesis in vivo by αΝβ3-targeted magnetic resonance imaging. Nat. Med.4(5), 623–626 (1998).
  • Flacke S, Fischer S, Scott MJ et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation104(11), 1280–1285 (2001).
  • Kobayashi H, Sato N, Hiraga A et al. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn. Reson. Med.45(3), 454–460 (2001).
  • Sato N, Kobayashi H, Hiraga A et al. Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn. Reson. Med.46(6), 1169–1173 (2001).
  • Hood JD, Bednarski M, Frausto R et al. Tumor regression by targeted gene delivery to the neovasculature. Science296(5577), 2404–2407 (2002).
  • Lanza GM, Yu X, Winter PM et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation106(22), 2842–2847 (2002).
  • Fink C, Kiessling F, Bock M et al. High-resolution three-dimensional MR angiography of rodent tumors: morphologic characterization of intratumoral vasculature. J. Magn. Reson. Imaging18(1), 59–65 (2003).
  • Winter PM, Caruthers SD, Kassner A et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel α(ν)β3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res.63(18), 5838–5843 (2003).
  • Winter PM, Morawski AM, Caruthers SD et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with α(ν)β3-integrin-targeted nanoparticles. Circulation108(18), 2270–2274 (2003).
  • Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol.23(8), 983–987 (2005).
  • Winter PM, Neubauer AM, Caruthers SD et al. Endothelial α(v)β3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.26(9), 2103–2109 (2006).
  • Lanza GM, Wallace KD, Scott MJ et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation94(12), 3334–3340 (1996).
  • Lanza GM, Abendschein DR, Hall CS et al. Molecular imaging of stretch-induced tissue factor expression in carotid arteries with intravascular ultrasound. Invest. Radiol.35(4), 227–234 (2000).
  • Lanza GM, Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr. Probl. Cardiol.28(12), 625–653 (2003).
  • Hughes MS, Marsh JN, Hall CS et al. Acoustic characterization in whole blood and plasma of site-targeted nanoparticle ultrasound contrast agent for molecular imaging. J. Acoust. Soc. Am.117(2), 964–972 (2005).
  • Wickline SA, Lanza GM. Nanotechnology for molecular imaging and targeted therapy. Circulation107(8), 1092–1095 (2003).
  • Wickline SA, Lanza GM. Molecular imaging, targeted therapeutics, and nanoscience. J. Cell. Biochem.39(Suppl.), 90–97 (2002).
  • Winter PM, Shukla HP, Caruthers SD et al. Molecular imaging of human thrombus with computed tomography. Acad. Radiol.12(Suppl. 1), S9–S13 (2005).
  • Flaim SF. Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif. Cells Blood Substit. Immobil. Biotechnol.22(4), 1043–1054 (1994).
  • Mattrey RF. The potential role of perfluorochemicals (PFCs) in diagnostic imaging. Artif. Cells Blood Substit. Immobil. Biotechnol.22(2), 295–313 (1994).
  • Winter PM, Caruthers SD, Yu X et al. Improved molecular imaging contrast agent for detection of human thrombus. Magn. Reson. Med.50(2), 411–416 (2003).
  • Winter P, Athey P, Kiefer G et al. Improved paramagnetic chelate for molecular imaging with MRI. J. Magn. Mater.293, 540–545 (2005).
  • Anderson SA, Rader RK, Westlin WF et al. Magnetic resonance contrast enhancement of neovasculature with α(ν)β (3)-targeted nanoparticles. Magn. Reson. Med.44(3), 433–439 (2000).
  • Yu X, Song SK, Chen J et al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn. Reson. Med.44(6), 867–872 (2000).
  • Caruthers SD, Winter PM, Wickline SA, Lanza GM. Targeted magnetic resonance imaging contrast agents. Methods Mol. Med.124, 387–400 (2006).
  • Cyrus T, Abendschein DR, Caruthers SD et al. MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles. J. Cardiovasc. Magn. Reson.8(3), 535–541 (2006).
  • Wickline SA, Neubauer AM, Winter P, Caruthers S, Lanza G. Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler. Thromb. Vasc. Biol.26(3), 435–441 (2006).
  • Schmieder AH, Winter PM, Caruthers SD et al. Molecular MR imaging of melanoma angiogenesis with ανβ3-targeted paramagnetic nanoparticles. Magn. Reson. Med.53(3), 621–627 (2005).
  • Guzman LA, Labhasetwar V, Song C et al. Local intraluminal infusion of biodegradable polymeric nanoparticles. A novel approach for prolonged drug delivery after balloon angioplasty. Circulation94(6), 1441–1448 (1996).
  • Kolodgie FD, John M, Khurana C et al. Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation106(10), 1195–1198 (2002).
  • Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm.242(1–2), 121–128 (2002).
  • Crowder KC, Hughes MS, Marsh JN et al. Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery. Ultrasound Med. Biol.31(12), 1693–1700 (2005).
  • Harris TD, Kalogeropoulos S, Nguyen T et al. Design, synthesis, and evaluation of radiolabeled integrin α ν β 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biother. Radiopharm.18(4), 627–641 (2003).
  • Sadeghi MM, Krassilnikova S, Zhang J et al. Detection of injury-induced vascular remodeling by targeting activated ανβ3 integrin in vivo. Circulation110(1), 84–90 (2004).
  • O’Brien ER, Garvin MR, Dev R et al. Angiogenesis in human coronary atherosclerotic plaques. Am. J. Pathol.145(4), 883–894 (1994).
  • Gossl M, Rosol M, Malyar NM et al. Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol.272(2), 526–537 (2003).
  • Moulton KS. Plaque angiogenesis: its functions and regulation. Cold Spring Harb. Symp. Quant. Biol.67, 471–482 (2002).
  • Tenaglia AN, Peters KG, Sketch MH Jr, Annex BH. Neovascularization in atherectomy specimens from patients with unstable angina: implications for pathogenesis of unstable angina. Am. Heart J. 135(1), 10–14 (1998).
  • Khurana R, Zhuang Z, Bhardwaj S et al. Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation110(16), 2436–2443 (2004).
  • Moreno PR, Purushothaman KR, Fuster V et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation110(14), 2032–2038 (2004).
  • Ingber D, Fujita T, Kishimoto S et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature348(6301), 555–557 (1990).
  • Moulton KS, Heller E, Konerding MA et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation99(13), 1726–1732 (1999).
  • Herbst RS, Madden TL, Tran HT et al. Safety and pharmacokinetic effects of TNP-470, an angiogenesis inhibitor, combined with paclitaxel in patients with solid tumors: evidence for activity in non-small-cell lung cancer. J. Clin. Oncol.20(22), 4440–4447 (2002).
  • De Palma M, Naldini L. Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochem. Biophys. Acta1766(1), 159–166 (2006).
  • Verhoef C, de Wilt JH, Verheul HM. Angiogenesis inhibitors: perspectives for medical, surgical and radiation oncology. Curr. Pharm. Des. 12(21), 2623–2630 (2006).
  • Cyrus T, Winter PM, Caruthers SD, Wickline SA, Lanza GM. Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy. Expert Rev. Cardiovasc. Ther.3(4), 705–715 (2005).
  • Morawski AM, Lanza GA, Wickline SA. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr. Opin. Biotechnol.16(1), 89–92 (2005).
  • Morawski AM, Winter PM, Crowder KC et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn. Reson. Med.51(3), 480–486 (2004).
  • Clowes AW, Clowes MM, Fingerle J, Reidy MA. Kinetics of cellular proliferation after arterial injury. V. Role of acute distension in the induction of smooth muscle proliferation. Lab. Invest.60(3), 360–364 (1989).
  • Steffel J, Luscher TF, Tanner FC. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation113(5), 722–731 (2006).
  • van der Wal AC, Li X, de Boer OJ. Tissue factor expression in the morphologic spectrum of vulnerable atherosclerotic plaques. Semin. Thromb. Hemost.32(1), 40–47 (2006).
  • Mekhail TM, Markman M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother.3(6), 755–766 (2002).
  • Bhoday J, de Silva S, Xu Q. The molecular mechanisms of vascular restenosis: which genes are crucial? Curr. Vasc. Pharmacol.4(3), 269–275 (2006).
  • Mitra AK, Agrawal DK. In stent restenosis: bane of the stent era. J. Clin. Pathol.59(3), 232–239 (2006).
  • Lutgens E, van Suylen RJ, Faber BC et al. Atherosclerotic plaque rupture: local or systemic process? Arterioscler. Thromb. Vasc. Biol.23(12), 2123–2130 (2003).
  • Lanza GM, Abendschein DR, Hall CS et al.In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles. J. Am. Soc. Echocardiogr.13(6), 608–614 (2000).
  • Morawski AM, Winter PM, Yu X et al. Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magn. Reson. Med.52(6), 1255–1262 (2004).
  • Lanza GM, Winter PM, Neubauer AM et al. (1)H/(19)F magnetic resonance molecular imaging with perfluorocarbon nanoparticles. Curr. Top. Dev. Biol.70, 57–76 (2005).
  • Caruthers SD, Neubauer AM, Hockett FD et al.In vitro demonstration using 19F magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at 1.5 Tesla. Invest. Radiol.41(3), 305–312 (2006).
  • Pereboeva L, Curiel DT. Cellular vehicles for cancer gene therapy: current status and future potential. Bio. Drugs18(6), 361–385 (2004).
  • Fazel S, Tang GH, Angoulvant D et al. Current status of cellular therapy for ischemic heart disease. Ann. Thorac. Surg.79(6), S2238–S2247 (2005).
  • Yeh TC, Zhang W, Ildstad ST, Ho C. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn. Reson. Med.30(5), 617–625 (1993).
  • Ahrens ET, Feili-Hariri M, Xu H, Genove G, Morel PA. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med.49(6), 1006–1013 (2003).
  • Jacobs RE, Fraser SE. Magnetic resonance microscopy of embryonic cell lineages and movements. Science263(5147), 681–684 (1994).
  • Modo M, Mellodew K, Cash D et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage21(1), 311–317 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.