1,227
Views
198
CrossRef citations to date
0
Altmetric
Review

Biodegradable dextran hydrogels for protein delivery applications

&
Pages 147-164 | Published online: 09 Jan 2014

References

  • Pavlou AK, Reichert JM. Recombinant protein therapeutics – success rates, market trends and values to 2010. Nat. Biotechnol.22, 1513–1519 (2004).
  • Reichert JM. Trends in US approvals: new biopharmaceuticals and vaccines. Trends Biotechnol.24, 293–298 (2006).
  • Orive G, Hernández RM, Gascón AR, Domínguez-Gil A, Pedraz JL. Drug delivery in biotechnology: present and future. Curr. Opin. Biotechnol.14, 659–664 (2003).
  • Hermeling S, Crommelin DJA, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res.21, 897–903 (2004).
  • Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov.4, 298–306 (2005).
  • Bailon P, Berthold W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm. Sci. Technol. Today1, 352–356 (1998).
  • Beals JM, Shanafelt AB. Enhancing exposure of protein therapeutics. Drug Discov. Today3, 87–94 (2006).
  • Hoffman AS. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev.43, 3–12 (2002).
  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater.18, 1345–1360 (2006).
  • Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int. J. Pharm.282, 1–18 (2004).
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev.55, 329–347 (2002).
  • Metselaar JM, Mastrobattista E, Storm G. Liposomes for intravenous drug targeting. Mini Rev. Med. Chem.2, 319–329 (2002).
  • Jorgensen L, Moeller EH, van de Weert M, Nielsen HM, Frokjaer S. Preparing and evaluating delivery systems for proteins. Eur. J. Pharm. Sci.29, 174–182 (2006).
  • Friess W. Collagen-biomaterial for drug delivery. Eur. J. Pharm. Biopharm.45, 113–136 (1998).
  • Masters KS, Shah DN, Leinwand LA, Anseth KS. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials26, 2517–2525 (2005).
  • Leonard M, de Boisseson MR, Hubert P, Dalencon F, Dellacherie E. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J. Control Rel.98, 395–405 (2004).
  • Woo BH, Jiang G, Jo YW, DeLuca PP. Preparation and characterization of a composite PLGA and poly(acryloyl hydroxyethyl starch) microsphere system for protein delivery. Pharm. Res.18, 1600–1606 (2001).
  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm.57, 19–34 (2004).
  • van de Wetering P, Metters AT, Schoenmakers RG, Hubbell JA. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J. Control Rel.102, 619–627 (2005).
  • Martens P, Anseth KS. Characterization of hydrogels from acrylate modified poly(vinyl alcohol) macromers. Polymer41, 7715–7722 (2000).
  • Lu S, Anseth KS. Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J. Control Rel.57, 291–300 (1999).
  • Williams DF. Williams Dictionary of Biomaterials. Williams DF (Ed.). Liverpool University Press, IL, USA (1999).
  • Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm.50, 27–46 (2000).
  • Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev.54, 13–36 (2002).
  • Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels – review of temperature-sensitive systems. Eur. J. Pharm. Biopharm.58, 409–426 (2004).
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today7, 569–579 (2002).
  • Bos GW, Jacobs JJL, Koten JW et al.In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur. J. Pharm. Sci.21, 561–567 (2004).
  • Park YD, Tirelli N, Hubbell JA. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials24, 893–900 (2003).
  • Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J. Contr. Rel.80, 9–28 (2002).
  • Packhaeuser CB, Schnieders J, Oster CG, Kissel T. In situ forming parenteral drug delivery systems: an overview. Eur. J. Pharm. Biopharm.58, 445–455 (2004).
  • Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseef JH, Bowman CN. In situ forming degradable networks and their application in tissue engineering and drug delivery. J. Control Rel.78, 199–209 (2002).
  • Cohn D, Sosnik A, Garty S. Smart hydrogels for in situ generated implants. Biomacromology6, 1168–1175 (2005).
  • Jeong B, Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol.20, 305–311 (2002).
  • Walker GJ. Dextrans. In: Biochemistry of Carbohydrates II (Volume 16). Manners DJ (Ed.). University Park Press, MA, USA, 75–125 (1978).
  • Mehvar R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control Rel.69, 1–25 (2000).
  • Arturson G, Wallenius G. The renal clearance of dextran of different molecular sizes in normal humans. Scan. J. Clin. Lab. Invest.1, 81–86 (1964).
  • Arturson G, Wallenius G. The intravascular persistence of dextran of different molecular sizes in normal humans. Scan. J. Clin. Lab. Invest.1, 76–80 (1964).
  • Edman P, Ekman B, Sjöholm I. Immobilization of proteins in microspheres of biodegradable polyacryldextran. J. Pharm. Sci.69, 838–842 (1980).
  • van Dijk-Wolthuis WNE, Hoogeboom JAM, van Steenbergen MJ, Tsang SKY, Hennink WE. Degradation and release behavior of dextran-based hydrogels. Macromolecules30, 4639–4645 (1997).
  • van Dijk-Wolthuis WNE, Tsang SKY, Kettenes-van den Bosch JJ, Hennink WE. A new class of polymerizable dextrans with hydrolyzable groups: hydroxyethyl methacrylated dextran with and without oligolactate spacer. Polymer38, 6235–6242 (1997).
  • de Groot CJ, van Luyn MJA, van Dijk-Wolthuis WNE et al.In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials22, 1197–1203 (2001).
  • Cadée JA, van Luyn MJA, Brouwer LA et al.In vivo biocompatibility of dextran-based hydrogels. J. Biomed. Mater. Res.50, 397–404 (2000).
  • Franssen O, Hennink WE. A novel preparation method for polymeric microparticles without the use of organic solvents. Int. J. Pharm.168, 1–7 (1998).
  • Stenekes RJH, Franssen O, van Bommel EMG, Crommelin DJA, Hennink WE. The preparation of dextran microspheres in an all-aqueous system: effects of the formulation parameters on particle characteristics. Pharm. Res.15, 557–561 (1998).
  • Franssen O, Vos OP, Hennink WE. Delayed release of a model protein from enzymatically-degrading dextran hydrogel. J. Control Rel.44, 237–245 (1997).
  • Franssen O, Vandervennet L, Roders P, Hennink WE. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres. J. Control Rel.60, 211–221 (1999).
  • Cadée JA, de Groot CJ, Jiskoot W, den Otter W, Hennink WE. Release of recombinant human interleukin-2 from dextran-based hydrogels. J. Control Rel.78, 1–13 (2002).
  • de Groot CJ, Cadée AJ, Koten JW, Hennink WE, den Otter W. Therapeutic efficacy of IL-2-loaded hydrogels in a mouse tumor model. Int. J. Cancer98, 134–140 (2002).
  • de Geest BG, Déjugnat C, Sukhuroukov GB, Braeckmans K, de Smedt SC, Demeester J. Self-rupturing microcapsules. Adv. Mater.17, 2357–2361 (2005).
  • de Geest BG, Déjugnat C, Verhoeven E et al. Layer-by-layer coating of degradable microgels for pulsed drug delivery. J. Control Rel.116, 159–169 (2006).
  • Lévesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials26, 7436–7446 (2005).
  • Lévesque SG, Shoichet MS. Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds. Biomaterials27, 5277–5285 (2006).
  • Maire M, Logeart-Avramoglou D, Degat MC, Chaubet F. Retention of transforming growth factor β1 using functionalized dextran-based hydrogels. Biomaterials26, 1771–1780 (2005).
  • Maire M, Chaubet F, Mary P, Blanchat C, Meunier A, Logeart-Avramoglou D. Bovine BMP osteoinductive potential enhanced by functionalized dextran-derived hydrogels. Biomaterials26, 5085–5092 (2005).
  • Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J. A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials26, 4677–4683 (2005).
  • Zhang XZ, Sun GM, Wu DQ, Chu CC. Synthesis and characterization of partially biodegradable and thermosensitive hydrogel. J. Mater. Sci. Mater. Med.15, 865–875 (2004).
  • Zhang XZ, Wu DQ, Sun GM, Chu CC. Novel biodegradable and thermosensitive Dex-AI/PNIPAAm hydrogel. Macromol. Biosci.3, 87–91 (2003).
  • Zhang XZ, Wu DQ, Chu CC. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials25, 4719–4730 (2004).
  • Zhang XZ, Sun GM, Chu CC. Temperature-sensitive dendrite-shaped PNIPAAm/Dex-AI hybrid hydrogel particles: formulation and properties. Eur. Polym. J.40, 2251–2257 (2004).
  • Sun G, Chu CC. Synthesis, characterization of biodegradable dextran-allyl isocyanate-ethylamine/polyethylene glycol-diacrylate hydrogels and their in vitro release of albumin. Carbohydr. Polym.65, 273–287 (2006).
  • Tanna S, Taylor MJ, Sahota TS, Sawicka K. Glucose-responsive UV polymerised dextran-concanavalin A acrylic derivatised mixtures for closed-loop insulin delivery. Biomaterials27, 1586–1597 (2006).
  • Tanna S, Sahota TS, Sawicka K, Taylor MJ. The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery. Biomaterials27, 4498–4507 (2006).
  • Maia J, Ferreira L, Carvalho R, Ramos MA, Gil MH. Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer46, 9604–9614 (2005).
  • Schacht E, Bogdanov B, van den Bulcke A, de Rooze N. Hydrogels prepared by crosslinking of gelatin with dextran dialdehyde. Reactive Funct. Polym.33, 109–116 (1997).
  • Draye JP, Delaey B, van de Voorde A, van den Bulcke A, Bogdanov B, Schacht E. In vitro release characteristics of bioactive molecules from dextran dialdehyde crosslinked gelatin hydrogel films. Biomaterials19, 99–107 (1998).
  • Draye JP, Delaey B, van de Voorde A, van den Bulcke A, de Reu B, Schacht E. In vitro and in vivo biocompatibility of dextran dialdehyde crosslinked gelatin hydrogel films. Biomaterials19, 1677–1687 (1998).
  • Ferreira L, Gil MH, Dordick JS. Enzymatic synthesis of dextran-containing hydrogels. Biomaterials23, 3957–3967 (2002).
  • Ferreira L, Gil MH, Cabrita AMS, Dordick JS. Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels. Biomaterials26, 4707–4716 (2005).
  • Stenekes RJH, Talsma H, Hennink WE. Formation of dextran hydrogels by crystallization. Biomaterials22, 1891–1898 (2001).
  • Huh KM, Ooya T, Lee WK et al. Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and α-cyclodextrin. Macromolecules34, 8657–8662 (2001).
  • Choi HS, Kontani K, Huh KM et al. Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromol. Biosci.2, 298–303 (2002).
  • Choi HS, Yamamooto K, Ooya T, Yui N. Synthesis of poly(ε-lysine)-grafted dextrans and their pH – and thermosensitive hydrogelation with cyclodextrins. Chem. Phys. Chem.6, 1081–1086 (2005).
  • de Jong SJ, de Smedt SC, Wahls MWC, Demeester J, Kettenes-van de Bosch JJ, Hennink WE. Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules33, 3680–3686 (2000).
  • de Jong SJ, van Nostrum CF, Kroon-Batenburg LMJ, Kettenes-van de Bosch JJ, Hennink WE. Oligolactate-grafted dextran hydrogels: detection of stereocomplex crosslinks by x-ray diffraction. J. Appl. Polym. Sci.86, 289–293 (2002).
  • de Jong SJ, de Smedt SC, Demeester J, van Nostrum CF, Kettenes-van de Bosch JJ, Hennink WE. Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J. Control Rel.72, 47–56 (2001).
  • van Nostrum CF, Veldhuis TFJ, Bos GWB, Hennink WE. Tuning the degradation rate of poly(2-hydroxypropyl methacrylamide)-graft-oligo(lactic acid) stereocomplex hydrogels. Macromolecules37, 2113–2118 (2004).
  • de Jong SJ, van Eerdenbrugh B, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE. Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J. Control Rel.71, 261–275 (2001).
  • Bos GW, Hennink WE, Brouwer LA et al. Tissue reactions of in situ formed dextran hydrogels crosslinked by stereocomplex formation after subcutaneous implantation in rats. Biomaterials26, 3901–3909 (2005).
  • Sarmento B, Ribeiro A, Veiga F, Ferreira D. Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf. B Biointerfaces53, 193–202 (2006).
  • van Tomme SR, van Steenbergen MJ, de Smedt SC, van Nostrum CF, Hennink WE. Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials26, 2129–2135 (2005).
  • Van Tomme SR, de Geest BG, Braeckmans K et al. Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching. J. Control Rel.110, 67–78 (2005).
  • Van Tomme SR, van Nostrum CF, de Smedt SC, Hennink WE. Degradation behavior of dextran hydrogels composed of positively and negatively charged microspheres. Biomaterials27, 4141–4148 (2006).

Websites

  • in-Pharma Technologist.com www.in-pharmatechnologist.com/news/ ng.asp?n=69488-octoplus-octodex-protein-formulation-polyactive-pegylation
  • Pharmacosmos A/S www.dextran.net

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.