35
Views
1
CrossRef citations to date
0
Altmetric
Review

PET tracer technology for monitoring focal epilepsies

Pages 191-200 | Published online: 09 Jan 2014

References

  • Semah F, Picot MC, Adam C et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology51, 1256–1262 (1998).
  • Stephen LJ, Kwan P, Brodie MJ. Does the cause of localisation-related epilepsy influence the response to antiepileptic drug treatment? Epilepsia42, 357–362 (2001).
  • Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N. Engl. J. Med.345, 311–318 (2001).
  • Wyllie E, Comair YG, Kotagal P, Bulacio J, Bingaman W, Ruggieri P. Seizure outcome after epilepsy surgery in children and adolescents. Ann. Neurol.44, 740–748 (1998).
  • Cohen-Gadol AA, Ozduman K, Bronen RA, Kim JH, Spencer DD. Long-term outcome after epilepsy surgery for focal cortical dysplasia. J. Neurosurg.101, 55–65 (2004).
  • Salanova V, Markand O, Worth R. Temporal lobe epilepsy, analysis of patients with dual pathology. Acta Neurol. Scand.109, 126–131 (2004).
  • Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain124, 1683–700 (2001).
  • Fernandez G, Specht K, Weis S et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology60(6), 969–975 (2003).
  • Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage18(2), 423–438 (2003).
  • Li LM, Fish DR, Sisodiya SM, Shorvon SD, Alsanjari N, Stevens JM. High resolution magnetic resonance imaging in adults with partial or secondary generalised epilepsy attending a tertiary referral unit. J. Neurol. Neurosurg. Psychiatr.59, 384–387 (1995).
  • Liu RS, Lemieux L, Bell GS et al. A longitudinal quantitative MRI study of community-based patients with chronic epilepsy and newly diagnosed seizures, methodology and preliminary findings. Neuroimage14, 231–243 (2001).
  • Liu RS, Lemieux L, Bell GS et al. The structural consequences of newly diagnosed seizures. Ann. Neurol.52, 573–580 (2002).
  • Doescher JS, de Grauw TJ, Musick BS et al. Magnetic resonance imaging (MRI) and electroencephalographic (EEG) findings in a cohort of normal children with newly diagnosed seizures. J. Child Neurol.21, 491–495 (2006).
  • King MA, Newton MR, Jackson GD et al. Epileptology of the first-seizure presentation, a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet352, 1007–1011 (1998).
  • Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res.26, 141–150 (1996).
  • Jack CR Jr, Sharbrough FW, Twomey CK et al. Temporal lobe seizures, lateralization with MR volume measurements of the hippocampal formation. Radiology175, 423–429 (1990).
  • Jackson GD, Connelly A, Duncan JS, Grunewald RA, Gadian DG. Detection of hippocampal pathology in intractable partial epilepsy, increased sensitivity with quantitative magnetic resonance T2 relaxometry. Neurology43, 1793–1799 (1993).
  • Woermann FG, Barker GJ, Birnie KD, Meencke HJ, Duncan JS. Regional changes in hippocampal T2 relaxation and volume, a quantitative magnetic resonance imaging study of hippocampal sclerosis. J. Neurol. Neurosurg. Psychiatr.65, 656–664 (1998).
  • Bronen RA, Fulbright RK, Kim JH, Spencer SS, Spencer DD. A systematic approach for interpreting MR images of the seizure patient. Am. J. Roentgenol.169, 241–247 (1997).
  • Cendes F, Cook MJ, Watson C et al. Frequency and characteristics of dual pathology in patients with lesional epilepsy. Neurology45, 2058–2064 (1995).
  • Koepp MJ, Hand KS, Labbé C et al.In vivo [11C]flumazenil-PET correlates with ex vivo [3H]flumazenil autoradiography in hippocampal sclerosis. Ann. Neurol.43, 618–626 (1998).
  • Koepp MJ, Labbé C, Richardson MP et al. Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis. Brain120, 1865–1876 (1997).
  • Gaillard WD, Kopylev L, Weinstein S et al. Low incidence of abnormal (18F)FDG-PET in children with new-onset partial epilepsy, a prospective study. Neurology58(5), 717–722 (2002).
  • Chassoux F, Semah F, Bouilleret V et al. Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy, a correlative study. Brain127(Pt 1), 164–174 (2004).
  • Bouilleret V, Dupont S, Spelle L, Baulac M, Samson Y, Semah F. Insular cortex involvement in mesiotemporal lobe epilepsy, a positron emission tomography study. Ann. Neurol.51(2), 202–208 (2002).
  • Dupont S, Semah F, Baulac M, Samson Y. The underlying pathophysiology of ictal dystonia in temporal lobe epilepsy, an FDG-PET study. Neurology51(5), 1289–1292 (1998).
  • Savic I, Ingvar M, Stone-Elander S. Comparison of [11C]flumazenil and [18F]FDG as PET markers of epileptic foci. J. Neurol. Neurosurg. Psychiatr.56(6), 615–621 (1993).
  • Henry TR, Frey KA, Sackellares JC et al.In vivo cerebral metabolism and central benzodiazepine-receptor binding in temporal lobe epilepsy. Neurology43(10), 1998–2006 (1993).
  • Szelies B, Weber-Luxenburger G, Pawlik G et al. MRI-guided flumazenil- and FDG-PET in temporal lobe epilepsy. Neuroimage3(2), 109–118 (1996).
  • Debets RM, Sadzot B, van Isselt JW et al. Is 11C-flumazenil PET superior to 18FDG PET and 123I-iomazenil SPECT in presurgical evaluation of temporal lobe epilepsy? J. Neurol. Neurosurg. Psychiatr.62(2), 141–150 (1997).
  • Juhasz C, Chugani DC, Muzik O et al. Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy. Neurology55(6), 825–835 (2000).
  • Hand KS, Baird VH, van Paesschen W et al. Central benzodiazepine receptor autoradiography in hippocampal sclerosis. Br. J. Pharmacol.122(2), 358–364 (1997).
  • Hammers A, Koepp MJ, Hurlemann R, Richardson MP, Brooks DJ, Duncan JS. Abnormalities of grey and white matter [11C]flumazenil binding in temporal lobe epilepsy with normal MRI. Brain125, 2257–2271 (2002).
  • Hammers A, Koepp MJ, Labbe C et al. Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy. Neurology56(7), 897–906 (2001).
  • Frost JJ, Mayberg HS, Fisher RS et al. µ opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann. Neurol.23(3), 231–237 (1988).
  • Mayberg HS, Sadzot B, Meltzer CC et al. Quantification of µ and non-µ opiate receptors in temporal lobe epilepsy using positron emission tomography. Ann. Neurol.30(1), 3–11 (1991).
  • Kumlien E, Nilsson A, Hagberg G, Langstrom B, Bergstrom M. PET with 11C-deuterium-deprenyl and 18F-FDG in focal epilepsy. Acta Neurol. Scand.103(6), 360–366 (2001).
  • Kumlien E, Bergstrom M, Lilja A et al. Positron emission tomography with [11C]deuterium-deprenyl in temporal lobe epilepsy. Epilepsia36(7), 712–721 (1995).
  • Toczek MT, Carson RE, Lang L et al. PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology60(5), 749–756 (2003).
  • Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT. Analysis of [C-11]α-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo.J. Cereb. Blood Flow Metab.17(6), 659–669 (1997).
  • Merlet I, Ryvlin P, Costes N et al. Statistical parametric mapping of 5-HT(1A) receptor binding in temporal lobe epilepsy with hippocampal ictal onset on intracranial EEG. Neuroimage22(2), 886–896 (2004).
  • Pennell PB. PET, cholinergic neuroreceptor mapping. Adv. Neurol.83, 157–563 (2000).
  • Biraben A, Semah F, Ribeiro M-J, Douaud G, Remy P, Depaulis A. PET evidence for a role of the basal ganglia in patients with ring chromosome 20 epilepsy. Neurology63, 73–77 (2004).
  • Werhahn KJ, Landvogt C, Klimpe S et al. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]fallypride PET study. Epilepsia47, 1392 (2006).
  • Kumlien E, Hartvig P, Valind S, Oye I, Tedroff J, Langstrom B. NMDA-receptor activity visualized with (S)-[N-methyl-11C]ketamine and positron emission tomography in patients with medial temporal lobe epilepsy. Epilepsia40(1), 30–37 (1999).
  • Meltzer CC, Zubieta JK, Links JM, Brakeman P, Stumpf MJ, Frost JJ. MR-based correction of brain PET measurements for heterogeneous gray matter radioactivity distribution. J. Cereb. Blood Flow Metab.16(4), 650–658 (1996).
  • Tortella FC, Long JB, Holaday JW. Endogenous opioid systems, physiological role in the self-limitation of seizures. Brain Res.332(1), 174–178 (1985).
  • Koepp MJ, Richardson MP, Brooks DJ, Duncan JS. Focal cortical release of endogenous opioids during reading-induced seizures. Lancet352, 952–955 (1998).
  • Madar I, Lesser RP, Krauss G et al. Imaging of δ- and µ-opioid receptors in temporal lobe epilepsy by positron emission tomography. Ann. Neurol.41(3), 358–367 (1997).
  • Theodore WH, Carson RE, Andreasen P et al. PET imaging of opiate receptor binding in human epilepsy using [18F]cyclofoxy. Epilepsy Res.13(2), 129–139 (1992).
  • Chugani DC, Chugani HT. PET, mapping of serotonin synthesis. Adv. Neurol.83, 165–171 (2000).
  • Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J. Cereb. Blood Flow Metab.10(1), 1–12 (1990).
  • Diksic M. α-methyl tryptophan as a tracer for in vivo studies of brain serotonin system, from autoradiography to positron emission tomography. J. Chem. Neuroanat.5, 349–354 (1992).
  • Shoaf SE, Carson RE, Hommer D et al. The suitability of [11C]-α-methyl-L-tryptophan as a tracer for serotonin synthesis, studies with dual administration of [11C] and [14C] labeled tracer. J. Cereb. Blood Flow Metab.20(2), 244–252 (2000).
  • Natsume J, Kumakura Y, Bernasconi N et al. α-[11C] methyl-L-tryptophan and glucose metabolism in patients with temporal lobe epilepsy. Neurology60(5), 756–761 (2003).
  • Waterhouse RN. Imaging the PCP site of the NMDA ion channel. Nucl. Med. Biol.30(8), 869–878 (2003).
  • Sisodiya SM. Malformations of cortical development, burdens and insights from important causes of human epilepsy. Lancet Neurol.3(1), 29–38 (2004).
  • Barkovich AJ, Kuzniecky RI. Neuroimaging of focal malformations of cortical development. J. Clin. Neurophysiol.13(6), 481–494 (1996).
  • Tassi L, Colombo N, Garbelli R et al. Focal cortical dysplasia, neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain125, 1719–1732 (2002).
  • Richardson MP, Koepp MJ, Brooks DJ, Fish DR, Duncan JS. Benzodiazepine receptors in focal epilepsy with cortical dysgenesis, an 11C-flumazenil PET study. Ann. Neurol.40(2), 188–198 (1996).
  • Richardson MP, Koepp MJ, Brooks DJ et al. Cerebral activation in malformations of cortical development. Brain121, 1295–1304 (1998).
  • Hammers A, Koepp MJ, Richardson MP et al. Central benzodiazepine receptors in malformations of cortical development: a quantitative study. Brain124, 1555–1565 (2001).
  • Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS. Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain126, 1300–1318 (2003).
  • Hammers A, Koepp MJ, Brooks DJ, Duncan JS. Periventricular white matter flumazenil binding and postoperative outcome in hippocampal sclerosis. Epilepsia46(6), 944–948 (2005).
  • Edwards JC, Wyllie E, Ruggeri PM et al. Seizure outcome after surgery for epilepsy due to malformation of cortical development. Neurology55(8), 1110–1114 (2000).
  • Sisodiya SM, Free SL, Stevens JM, Fish DR, Shorvon SD. Widespread cerebral structural changes in patients with cortical dysgenesis and epilepsy. Brain118, 1039–1050 (1995).
  • Fedi M, Reutens D, Okazawa H et al. Localizing value of α-methyl-L-tryptophan PET in intractable epilepsy of neocortical origin. Neurology57, 1629–1636 (2001).
  • Fedi M, Reutens DC, Andermann F et al. α-[11C]-Methyl-L-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res.52(3), 203–213 (2003).
  • Juhasz C, Chugani DC, Muzik O et al. α-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology60, 960–968 (2003).
  • Kagawa K, Chugani DC, Asano E et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with α-[11C]methyl-l-tryptophan positron emission tomography (PET). J. Child Neurol.20(5), 429–438 (2005).
  • Marusic P, Najm IM, Ying Z et al. Focal cortical dysplasias in eloquent cortex, functional characteristics and correlation with MRI and histopathologic changes. Epilepsia43, 27–32 (2002).
  • Daumas-Duport C, Scheithauer BW, Chodkiewicz JP, Laws ER Jr, Vedrenne C. Dysembryoplastic neuroepithelial tumor, a surgically curable tumor of young patients with intractable partial seizures. Report of thirty-nine cases. Neurosurgery23(5), 545–556 (1988).
  • Richardson MP, Hammers A, Brooks DJ, Duncan JS. Benzodiazepine-GABA(A) receptor binding is very low in dysembryoplastic neuroepithelial tumor, a PET study. Epilepsia42(10), 1327–1334 (1988).
  • Maehara T, Nariai T, Arai N et al. Usefulness of [11C]methionine PET in the diagnosis of dysembryoplastic neuroepithelial tumor with temporal lobe epilepsy. Epilepsia45(1), 41–45 (2004).
  • Koepp MJ, Hammers A, Labbe C, Woermann FG, Brooks DJ, Duncan JS. 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI. Neurology54(2), 332–339 (2000).
  • Lamusuo S, Pitkanen A, Jutila L et al. [11 C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy, correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology. Neurology54(12), 2252–2260 (2000).
  • Szelies B, Weber-Luxenburger G, Mielke R et al. Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy, comparison with coregistered hippocampal metabolism and volumetry. Eur. J. Neurol.7(4), 393–400 (2000).
  • Ryvlin P, Bouvard S, Le Bars D et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain121, 2067–2081 (1998).
  • Richardson MP, Koepp MJ, Brooks DJ, Duncan JS. 11C-flumazenil PET in neocortical epilepsy. Neurology51(2), 485–492 (1998).
  • Savic I, Thorell JO, Roland P. [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia36(12), 1225–1232 (1995).
  • Berkovic SF, McIntosh AM, Kalnins RM et al. Preoperative MRI predicts outcome of temporal lobectomy, an actuarial analysis. Neurology45(7), 1358–1363 (1995).
  • Spencer SS, Bautista RE. Functional neuroimaging in localization of the ictal onset zone. Adv. Neurol.83, 285–296 (2000).
  • Spencer SS, Theodore WH, Berkovic SF. Clinical applications, MRI, SPECT, and PET. Magn. Reson. Imaging13(8), 1119–1124 (1995).
  • von Oertzen J, Urbach H, Jungbluth S et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J. Neurol. Neurosurg. Psychiatr.73(6), 643–647 (2002).
  • Urbach H, Hattingen J, von Oertzen J et al. MR imaging in the presurgical workup of patients with drug-resistant epilepsy. Am. J. Neuroradiol.25(6), 919–926 (2004).
  • Bancaud J, Talairach J. Clinical semiology of frontal lobe seizures. Adv. Neurol.57, 3–58 (1992).
  • Isnard J, Guenot M, Ostrowsky K, Sindou M, Mauguiere F. The role of the insular cortex in temporal lobe epilepsy. Ann. Neurol.48(4), 614–623 (2000).
  • Sisodiya SM, Moran N, Free SL et al. Correlation of widespread preoperative magnetic resonance imaging changes with unsuccessful surgery for hippocampal sclerosis. Ann. Neurol.41(4), 490–496 (1997).
  • Theodore WH, DeCarli C, Gaillard WD. Total cerebral volume is reduced in patients with localization-related epilepsy and a history of complex febrile seizures. Arch. Neurol.60(2), 250–252 (2003).
  • Yoon HH, Kwon HL, Mattson RH, Spencer DD, Spencer SS. Long-term seizure outcome in patients initially seizure-free after resective epilepsy surgery. Neurology61(4), 445–450 (2003).
  • Bates SF, Chen C, Robey R, Kang M, Figg WD, Fojo T. Reversal of multidrug resistance, lessons from clinical oncology. Novartis Found. Symp.243, 83–96 (2002).
  • Löscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther.301, 7–14 (2002).
  • Löscher W, Potschka H. Blood–brain barrier active efflux transporters, ATP-binding cassette gene family. Neuro. Rx.2, 86–98 (2005).
  • Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain129, 18–35 (2006).
  • Aronica E, Gorter JA, Ramkema M et al. Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia45, 441–451 (2004).
  • Dombrowski SM, Desai SY, Marroni M et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia42, 1501–1506 (2001).
  • Sisodiya SM, Heffernan J, Squier MV. Over-expression of P-glycoprotein in malformations of cortical development. Neuroreport10, 3437–3441 (1999).
  • Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia36, 1–6 (1995).
  • Brunner M, Langer O, Sunder-Plassmann R et al. Influence of functional haplotypes in the drug transporter gene ABCB1 on central nervous system drug distribution in humans. Clin. Pharmacol. Ther.78, 182–190 (2005).
  • Sasongko L, Link JM, Muzi M et al. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin. Pharmacol. Ther.77, 503–514 (2005).
  • Toornvliet R, van Berckel BN, Luurtsema G et al. Effect of age on functional P-glycoprotein in the blood–brain barrier measured by use of (R)-[(11)C]verapamil and positron emission tomography. Clin. Pharmacol. Ther.79, 540–548 (2006).
  • Siddiqui A, Kerb R, Weale ME et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. New Eng. J. Med.348(15), 1442–1448 (2003).
  • Kortekaas R, Leenders KL, van Oostrom JC et al. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo.Ann. Neurol.57, 176–179 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.