213
Views
30
CrossRef citations to date
0
Altmetric
Review

Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering

, &
Pages 719-728 | Published online: 09 Jan 2014

References

  • Downey PA, Siegel MI. Bone biology and the clinical implications for osteoporosis. Phys. Ther.86, 77–91 (2006).
  • Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J. Cell. Mol. Med.10, 7–19 (2006).
  • Sommerfeldt DW, Rubin CT. Biology of bone and how it orchestrates the form and function of the skeleton. Eur. Spine J.10, S86–S95 (2001).
  • Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology II: formation, form, modeling, remodeling, and regulation of cell function. Instr. Course Lect.45, 387–399 (1996).
  • Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology I: structure, blood supply, cells, matrix, and mineralization. Instr. Course Lect.45, 371–386 (1996).
  • Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cell. Mater.15, 53–76 (2008).
  • Loveridge N. Bone: more than a stick. J. Anim. Sci.77(Suppl.), S190–S196 (1999).
  • Karsenty G. Genetic control of skeletal development. Novartis Found. Symp.232, 6–17 (2001).
  • Oreffo RO, Cooper C, Mason C, Clements M. Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential. Stem Cell Rev.1, 169–178 (2005).
  • Robey PG, Fedarko NS, Hefferan TE et al. Structure and molecular regulation of bone matrix proteins. J. Bone Miner. Res.2(Suppl.), S483–S487 (1993).
  • Lian JB, Stein GS. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop. J.15, 118–140 (1995).
  • Gericke A, Qin C, Spevak L et al. Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif. Tissue Int.77, 45–54 (2005).
  • Boskey AL, Wians FH Jr, Hauschka PV. The effect of osteocalcin on in vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif. Tissue Int.37, 57–62 (1985).
  • Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury36(Suppl.), S20–S27 (2005).
  • Becker W, Urist M, Becker BE et al. Clinical and histologic observations of sites implanted with intraoral autologous bone grafts or allografts. 15 human case reports. J. Periodontol.67, 1025–1033 (1996).
  • Costantino PD, Hiltzik DH, Sen C et al. Sphenoethmoid cerebrospinal fluid leak repair with hydroxyapatite cement. Arch. Otolaryngol. Head Neck Surg.127, 588–593 (2001).
  • Lane JM, Yasko AW, Tomin E et al. Bone marrow and recombinant human bone morphogenetic protein-2 in osseous repair. Clin. Orthop. Relat. Res.361, 216–227 (1999).
  • Citardi MJ, Friedman CD. Nonvascularized autogenous bone grafts for craniofacial skeletal augmentation and replacement. Otolaryngol. Clin. North Am.27, 891–908 (1994).
  • Habal MB. Bone grafting in craniofacial surgery. Clin. Plast. Surg.21, 349–363 (1994).
  • Younger EM, Chapman MW. Morbidity at bone graft donor sites. J. Orthop. Trauma3, 192–195 (1989).
  • Langer R, Vacanti JP. Tissue engineering. Science260, 920–926 (1993).
  • Sabolinski ML, Alvarez O, Auletta M, Mulder G, Parenteau NL. Cultured skin as a smart material for healing wounds: experience in venous ulcers. Biomaterials17, 311–320 (1996).
  • Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials19, 1405–1412 (1998).
  • Kaushal S, Amiel GE, Guleserian KJ et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med.7, 1035–1040 (2001).
  • Teng YD, Lavik EB, Qu X et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl Acad. Sci. USA99, 3024–3029 (2002).
  • Mao X, Chu CL, Mao Z, Wang JJ. The development and identification of constructing tissue engineered bone by seeding osteoblasts from differentiated rat marrow stromal stem cells onto three-dimensional porous nano-hydroxylapatite bone matrix in vitro. Tissue Cell37, 349–357 (2005).
  • Handschel J, Wiesmann HP, Depprich R, Kübler NR, Meyer U. Cell-based bone reconstruction therapies–cell sources. Int. J. Oral Maxillofac. Implants21, 890–898 (2006).
  • Xu RH, Chen X, Li DS et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol.20, 1261–1264 (2002).
  • Zandstra PW, Le HV, Daley GQ, Griffith LG, Lauffenburger DA. Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation. Biotechnol. Bioeng.69, 607–617 (2000).
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981).
  • Smith AG, Heath JK, Donaldson DD et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature336, 688–690 (1988).
  • Kärner E, Unger C, Sloan AJ, Ahrlund-Richter L, Sugars RV, Wendel M. Bone matrix formation in osteogenic cultures derived from human embryonic stem cells in vitro. Stem Cells Dev.16, 39–52 (2007).
  • Zur Nieden NI, Kempka G, Ahr HJ. In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation71, 18–27 (2003).
  • Bielby RC, Boccaccini AR, Polak JM, Buttery LD. In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng.10, 1518–25 (2004).
  • Duplomb L, Dagouassat M, Jourdon P, Heymann D. Concise review: embryonic stem cells: a new tool to study osteoblast and osteoclast differentiation. Stem Cells25, 544–552 (2007).
  • Fändrich F, Lin X, Chai GX et al. Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat. Med.8, 171–178 (2002).
  • Drukker M, Katz G, Urbach A et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl Acad. Sci. USA99, 9864–9869 (2002).
  • Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem. Soc. Trans.33, 1526–1530 (2005).
  • Baker DE, Harrison NJ, Maltby E et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol.25, 207–215 (2007).
  • Jain KK. Ethical and regulatory aspects of embryonic stem cell research. Expert Opin. Biol. Ther.5, 153–162 (2005).
  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation6, 230–247 (1968).
  • Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol.16, 381–390 (1966).
  • Polak JM, Bishop AE. Stem cells and tissue engineering: past, present, and future. Ann. NY Acad. Sci.1068, 352–367 (2006).
  • Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann. NY Acad. Sci.1117, 62–72 (2007).
  • Eberli D, Atala A. Tissue engineering using adult stem cells. Methods Enzymol.420, 287–302 (2006).
  • Sreerekha PR, Divya P, Krishnan LK. Adult stem cell homing and differentiation in vitro on composite fibrin matrix. Cell Prolif.39, 301–312 (2006).
  • Liu H, Fan H, Wang Y, Toh SL, Goh JC. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials29, 662–674 (2008).
  • Beloti MM, de Oliveira PT, Tagliani MM, Rosa AL. Bone cell responses to the composite of Ricinus communis polyurethane and alkaline phosphatase. J. Biomed. Mater. Res. A84, 435–41 (2008).
  • Beloti MM, Rosa AL. Osteoblast differentiation of human bone marrow cells under continuous and discontinuous treatment with dexamethasone. Braz. Dent. J.16, 156–161 (2005).
  • Beloti MM, Bellesini LS, Rosa AL. The effect of purmorphamine on osteoblast phenotype expression of human bone marrow mesenchymal cells cultured on titanium. Biomaterials26, 4245–4248 (2005).
  • Jonsson KB, Frost A, Nilsson O, Ljunghall S, Ljunggren O. Three isolation techniques for primary culture of human osteoblast-like cells: a comparison. Acta Orthop. Scand.70, 365–373 (1999).
  • Siggelkow H, Rebenstorff K, Kurre W et al. Development of the osteoblast phenotype in primary human osteoblasts in culture: comparison with rat calvarial cells in osteoblast differentiation. J. Cell. Biochem.75, 22–35 (1999).
  • De la Piedra C, Vicario C, de Acuña LR et al. Osteoinductive effect of bone bank allografts on human osteoblasts in culture. J. Orthop. Res.26, 200–207 (2008).
  • Schantz JT, Hutmacher DW, Chim H, Ng KW, Lim TC, Teoh SH. Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant.11, 125–138 (2002).
  • Beloti MM, Martins W Jr, Xavier SP, Rosa AL. in vitro osteogenesis induced by cells derived from sites submitted to sinus grafting with anorganic bovine bone. Clin. Oral Implants Res.19, 48–54 (2008).
  • Schwartz Fo HO, Novaes AB Jr, de Castro LM, Rosa AL, de Oliveira PT. In vitro osteogenesis on a microstructured titanium surface with additional submicron-scale topography. Clin. Oral Implants Res.18, 333–344 (2007).
  • De Oliveira PT, Zalzal SF, Beloti MM, Rosa AL, Nanci A. Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. J. Biomed. Mater. Res. A80, 554–564 (2007).
  • Beloti MM, de Oliveira PT, Gimenes R, Zaghete MA, Bertolini MJ, Rosa AL. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. J. Biomed. Mater. Res. A79, 282–288 (2006).
  • Liporaci JL Jr, Rosa AL, Beloti MM, Johnson A, van Noort R, da Rocha Barros VM. In vitro osteogenesis on fluorcanasite glass-ceramic with three different chemical compositions. J. Mater. Sci. Mater. Med.19, 833–838 (2008).
  • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol. Biosci.4, 743–765 (2004).
  • Wiesmann HP, Joos U, Meyer U. Biological and biophysical principles in extracorporal bone tissue engineering. Part II. Int. J. Oral Maxillofac. Surg.33, 523–530 (2004).
  • Ng AM, Tan KK, Phang MY et al. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J. Biomed. Mater. Res. A85, 301–312 (2008).
  • Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials27, 2414–2425 (2006).
  • Habraken WJ, Wolke JG, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev.59, 234–48 (2007).
  • Charles-Harris M, del Valle S, Hentges E, Bleuet P, Lacroix D, Planell JA. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds. Biomaterials28, 4429–4438 (2007).
  • Gao Y, Weng W, Cheng K et al. Preparation, characterization and cytocompatibility of porous ACP/PLLA composites. J. Biomed. Mater. Res. A79, 193–200 (2006).
  • Yao J, Radin S, Reilly G, Leboy PS, Ducheyne P. Solution-mediated effect of bioactive glass in poly (lactic-co-glycolic acid)-bioactive glass composites on osteogenesis of marrow stromal cells. J. Biomed. Mater. Res. A75, 794–801 (2005).
  • Yao J, Radin S, S Leboy P, Ducheyne P. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Biomaterials26, 1935–1943 (2005).
  • Ruhé PQ, Hedberg EL, Padron NT, Spauwen PH, Jansen JA, Mikos AG. Biocompatibility and degradation of poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites. J. Biomed. Mater. Res. A74, 533–544 (2005).
  • Zhang Y, Zhang M. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. J. Mater. Sci. Mater. Med.15, 255–260 (2004).
  • Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. J. Mater. Sci. Mater. Med.15, 419–422 (2004).
  • Lickorish D, Guan L, Davies JE. A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: evolution of scaffold design. Biomaterials28, 1495–1502 (2007).
  • Yang TH, Miyoshi H, Ohshima N. Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. J. Biomed. Mater. Res.55, 379–386 (2001).
  • Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J. Biomed. Mater. Res.51, 376–382 (2000).
  • Sikavitsas VI, Bancroft GN, Mikos AG. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mater. Res.62, 136–148 (2002).
  • Holtorf HL, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Ann. Biomed. Eng.33, 1238–1248 (2005).
  • Beloti MM, De Oliveira PT, De Carvalho PSP, Rosa AL. Seeding osteoblastic cells into a macroporous biodegradable scaffold by centrifugal force. J. Biomater. Appl. DOI: 10.1177/0885328208094082 (2008) (Epub ahead of print).
  • Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet354SI32–SI34 (1999).
  • Shieh SJ, Vacanti JP. State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery137, 1–7 (2005).
  • Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials1279–1288 (2001).
  • Schwarz RP, Goodwin TJ, Wolf DA. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods14, 51–58 (1992).
  • Ranly DM, Lohmann CH, Andreacchio D, Boyan BD, Schwartz Z. Platelet-rich plasma inhibits demineralized bone matrix-induced bone formation in nude mice. J. Bone Joint Surg. Am.89, 139–147 (2007).
  • Roussy Y, Bertrand Duchesne MP, Gagnon G. Activation of human platelet-rich plasmas: effect on growth factors release, cell division and in vivo bone formation. Clin. Oral Implants Res.18, 639–648 (2007).
  • De Oliveira PT, Andrade de Oliva M, Maximiano WM et al. Effects of a mixture of growth factors and proteins on the development of the osteogenic phenotype in human alveolar bone cell cultures. J. Histochem. Cytochem.56, 629–638 (2008).
  • Ren J, Ren T, Zhao P, Huang Y, Pan K. Repair of mandibular defects using MSCs-seeded biodegradable polyester porous scaffolds. J. Biomater. Sci. Polym. Ed.18, 505–517 (2007).
  • Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng.10, 1376–1385 (2004).
  • Castano-Izquierdo H, Alvarez-Barreto J, van den Dolder J, Jansen JA, Mikos AG, Sikavitsas VI. Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. J. Biomed. Mater. Res. A82, 129–138 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.