830
Views
92
CrossRef citations to date
0
Altmetric
Review

Ceramics as biomaterials for dental restoration

, , , &
Pages 729-745 | Published online: 09 Jan 2014

References

  • Gehre G. Keramische Werkstoffe. In: Zahnärztliche Werkstoffe und ihre Verarbeitung. Bd 1: Grundlagen und Verarbeitung (6th Auflage). Kappert H (Ed.). Hüthig Verlag, Heidelberg, Germany (1996).
  • Hoffmann-Axthelm W. Geschichte der Zahnheilkunde. Quintessenz Verlag, Berlin, Germany (1974).
  • Kirsten H Die Jacketkrone. Hermann Meusser Verlag, Berlin, Germany (1929).
  • Southan DE. Die Porzellan-Jacketkrone. In: Dental-Keramik Vorträge und Diskussionen anlässlich des 1. Internationalen Keramik-Symposiums. Mc Lean JW (Ed.). Quintessenz Verlag, Berlin, Germany (1984).
  • Kerschbaum T. Überlebenszeiten von Kronen und Brückenzahnersatz heute. Zahnärztl. Mitt.76, 2315–2320 (1986).
  • Kerschbaum T, Erpenstein H. Galvano-keramische Einzelkronen haben sich klinisch bewährt. Zahnärztl. Mitt.87, 28–33 (1997).
  • Schwickerath H. Werkstoffkundliche Bewertung keramischer Kronen. Zahnärztl. Mitt.77, 2422 (1987).
  • Schwickerath H, Coca I. Zur Festigkeit von Kronen im Frontzahnbereich. Dtsch Zahnarztl. Z.41, 1002 (1986).
  • McLean JW. Dental porcelains. In: Dental Materials Research, NBS Publications 354. Dickens G, Cassels JM (Eds). National Bureau of Standards, DC, USA (1972).
  • Hench LL, Bioceramics: from concept to clinic. J. Am. Ceram. Soc.74, 1487–1510 (1991).
  • Kokubo T. Bioactive glass–ceramics properties and application. Biomaterials12, 155–163 (1991).
  • Strub JR, Türp JC, Witkowski S, Hürzeler MB, Kern M. Curriculum Prothetik Bd. 2, Quintessenz Verlag, Berlin, Germany (2005).
  • Tinschert J, Natt T, Jorewitz A, Fischer H, Spiekermann H, Marx R. Belastbarkeit vollkeramischer Seitenzahnbrücken aus neuen Hartkernkeramiken. Dtsch Zahnarztl. Z.55, 610–616 (2000).
  • Tinschert J, Natt T, Latzke P, Schulze K, Heussen N, Spiekermann H. Vollkeramische Brücken aus DC-Zirkon – ein klinisches Konzept mit Erfolg? Dtsch Zahnarztl. Z.60, 435–445 (2005).
  • Kappert HF, Krah M. Keramiken – eine Übersicht. Quintessenz Zahntech.27, 668–704 (2001).
  • Kappert HF. Verblendung von Oxidkeramiken. In: Neue Oxidkeramiken und CAD/CAM-Techniken im Dentalbereich. Klinik, Labortechnik und Werkstoffkunde. Deutscher Ärzte Verlag DÄV, Köln, Germany (2007).
  • Kingery WD, Bowen RK, Uhlmann DR. Introduction to Ceramics. Wiley, NY, USA (1975).
  • O’Brian WJ. Dental porcelains. In: An Outline of Dental Materials and their Chemistry. O’Brian WJ, Ryge G (Eds). WB Sauders, PA, USA (1978).
  • Lindemann W. Kristalline Phasen in keramischen Verblendungen. Dent. Lab.33, 993–994 (1985).
  • Schmid M, Fischer J, Salk M, Strub J. Mikrogefüge leucit-verstärkter Glaskeramiken. Schweizer Monatsschr. Zahnmed.102, 1046–1053 (1992).
  • Della-Bona A, Salazar Marocho SM. Characterization and properties of a dental ceramic material. Presented at: 85th General Session of the IADR. New Orleans, LA, USA, 21–24 March 2007 (Abstract 022).
  • Abuzenada BM, Pober R, Girodano RII. Flexural strength and toothbrushing abrasion of veneering restorative dental materials. Presented at: ADEA/AADR/CADR Meeting. Orlando, FL, USA, 8–11 March 2006 (Abstract 1365).
  • Cesar PF, Yoshiruma HN, Miranda WG, Goldenstein H, Okada CY, Gonzaga CC. Fracture toughness of dental porcelains. Presented at: 81st General Session of the IADR, Goteborg, Sweden, 30 June–1 July 2003 (Abstract 0869).
  • Höland W, Beall GH. Glass–Ceramic Technology. The American Ceramic Society-Wiley, USA (2006).
  • McMillan PW. Glass–Ceramics (2nd Edition). Academic Press, NY, USA (1979).
  • Höland W. Glaskeramik. vdf Hochschulverlag AG an der ETH Zürich, UTB Stuttgart (2006)
  • Bühler-Zemp P, Völkl T. Scientific documentation IPS InLine, IVoclar Vivadent AG (2007).
  • Höland W, Frank M, Rheinberger VM. Surface crystallization of leucite in glass. J. Non-Cryst. Sol.180, 292–307 (1995).
  • Taylor D, Henderson CMB. Thermal expansion of the leucite group of minerals. Am. Min.53, 1476 (1968).
  • Kappert HF, Schwickerath H, Veiel S, Bregazzi J. Zur Korrosionsfestigkeit aufbrennfähiger Edelmetalllegierungen. Dtsch. Zahnärztl. Z.49, 716–721 (1994).
  • ISO 6872 Dental Ceramics (1998).
  • ISO 9693 Metal–ceramic dental restorative systems (2000).
  • Vogel W. Chemistry of Glass. The American Ceramic Society–Wiley, OH, USA (1985).
  • Vogel W, Höland W. The development of bioglass–ceramics for medical application. Angew. Chem. Int. (Engl. Transl.)26, 527–544 (1987).
  • Höland W, Vogel W, Naumann K, Gummel J. Interface reactions between machinable bioactive glass–ceramics and bone. J. Biomed. Mater. Res.9, 303–312 (1985).
  • Höland W, Götz W, Carl G, Vogel W. Microstructure of mica glass–ceramics and interface reactions between mica glass–ceramics and bone. Cells Mater.2, 105–112 (1992).
  • Höland W, Frank M, Schweiger M, Rheinberger VM. Development of translicent glass–ceramics for dental application. Glastech. Ber. Glass Sci. Technol.67C, 117–122 (1994).
  • Höland W. Biocompatible and bioactive glass–ceramics – state of the art and new directions. J. Non-Cryst. Sol.219, 192–197 (1997).
  • Höland W, Rheinberger VM, Wegner S, Frank M. Needle like apatite–leucite glass–ceramic as a base material for the veneering of metal restorations in dentistry. J. Mat. Sci.: Mater. Med.11, 1–7 (2000).
  • Müller R, Abu-Hilal LA, Reinsch S, Höland W. Coarsening of needle-shaped apatite crystals in SiO2–Al2O3–Na2O–K2O–CaO–P2O5–F glass. J. Mater. Sci.34, 65–69 (1999).
  • Völksch G, Höche T, Szabo I, Höland W. Phase content in a glass–ceramic from the SiO2–Al2O3–Na2O–K2O–CaO–P2O5–F system. Glastech. Ber. Glass Sci. Technol.71C, 500–502 (1998).
  • Szabo I, Barnab S, Völksch G, Höland W. Crystallization and color of apatite–leucite glass–ceramic. Glastech. Ber. Glass Sci. Technol.73C1, 354–357 (2000).
  • Kreidl NJ. Inorganic glass forming systems. In: Glass Science and Technology. Kreidl NJ, Uhlmann DR (Eds). Pergamin Press, FL, USA (1983).
  • Grossmann DG. Machinable glass–ceramic based on tetrasilicic mica. J. Am. Ceram. Soc.55, 446–449 (1972).
  • Köber K. Zahnärztliche Prothetik, 4. vollständig überarbeitet Auflage. Georg Thieme Verlag, Stuttgart, Germany (1995).
  • Marxkors PDR. Lehrbuch der zahnärztlichen Prothetik. Hanser, München, Germany (1991).
  • Jiang YL, Sun J, Weng WM, Zhang FQ. Long-term observation of 920 porcelain fused to metal prostheses. Shanghai Kou Qiang Yi Xue15(5), 490–492 (2006).
  • De Backer H, Van Maele G, De Moor N, Van den Berghe L, De Boever J. A 20-year retrospective survival study of fixed partial dentures. Int. J. Prosthodont.19(2), 143–153 (2006).
  • De Backer H, Van Maele G, De Moor N, Van den Berghe L, De Boever J. An 18-year retrospective survival study of full crowns with or without posts. Int. J. Prosthodont.19(2), 136–142 (2006).
  • Hubalkova H, Charvat J, Dostalova T, Linetskiy I. Long-term clinical evaluation of fixed dentures – two to fifteen years after insertion. Prague Med. Rep.106(1), 50–60 (2005).
  • Erpenstein H, Borchard R, Kerschbaum T. Long-term clinical results of galvano–ceramic and glass–ceramic individual crowns. J. Prosthet. Dent.83(5), 530–534 (2000).
  • Smales RJ, Hawthorne WS. Long-term survival of extensive amalgams and posterior crowns. J. Dent.25(3–4), 225–227 (1997).
  • Palmqvist S, Swartz B. Artificial crowns and fixed partial dentures 18 to 23 years after placement. Int. J. Prosthodont.6(3), 279–285 (1993).
  • Coornaert J, Adriaens P, De Boever J. Long-term clinical study of porcelain-fused-to-gold restorations. J. Prosthet. Dent.51(3), 338–342 (1984).
  • Walton TR. An up to 15-year longitudinal study of 515 metal–ceramic FPDs: part 1. Outcome. Int. J. Prosthodont.15(5), 439–445 (2002).
  • Walton TR. A 10-year longitudinal study of fixed prosthodontics: clinical characteristics and outcome of single-unit metal-ceramic crowns. Int. J. Prosthodont.12(6), 519–526 (1999).
  • Karlsson S. A clinical evaluation of fixed bridges, 10 years following insertion. J. Oral Rehabil.13(5), 423–432 (1986).
  • Libby G, Arcuri MR, LaVelle WE, Hebl L. Longevity of fixed partial dentures. J. Prosthet. Dent.78(2), 127–131 (1997).
  • Tan K, Pjetursson BE, Lang NP, Chan ES. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years III. Conventional FPDs. Clin. Oral Implants Res.15(6), 654–666 (2004).
  • Reitemeier B, Hansel K, Kastner C, Walter MH. Metal–ceramic failure in noble metal crowns: 7-year results of a prospective clinical trial in private practices. Int. J. Prosthodont.19(4), 397–399 (2006).
  • Etemadi S, Smales RJ. Survival of resin-bonded porcelain veneer crowns placed with and without metal reinforcement. J. Dent.34(2), 139–145 (2006).
  • Kappert HF. Dentalkeramik. In: Fortschritte der Zahnärztlichen Prothetik und Werkstoffkunde. Hanser, München, Germany, 343–389 (1989).
  • Schwickerath H. Prüfung der Verbundfestigkeit Metall–Keramik. Dtsch. Zahnärztl. Z.38, 21 (1983).
  • Meyenberg KH. Modified porcelain-fused-to-metal restorations and porcelain laminates for anterior aesthetics. Pract. Periodontics Aesthet. Dent.7(7), 33–44 (1995).
  • Derand P, Vereby P. Wear of low-fusing dental porcelains. J. Prosthet. Dent.81, 460–463 (1999).
  • Clelland NL, Agarwala V, Knobloch LA, Seghi RR. Relative wear of enamel opposing low-fusing dental porcelain. J. Prosthodont.12(3), 168–175 (2003).
  • Schuh C, Kinast EJ, Mezzomo E, Kapczinski MP. Effect of glazed and polished surface finishes on the friction coefficient of two low-fusing ceramics. J. Prosthet. Dent.93(3), 245–252 (2005).
  • Clelland NL, Agarwala V, Knobloch LA, Seghi RR. Wear of enamel opposing low-fusing and conventional ceramic restorative materials. J. Prosthodont.10(1), 8–15 (2001).
  • Yilmaz Y, Yilmaz A. Repairing a preveneered stainless steel crown with two different materials. J. Dent. Child. (Chic.)71(2), 135–138 (2004).
  • Burke FJ. Repair of metal–ceramic restorations using an abrasive silica-impregnating technique: two case reports. Dent. Update29(8), 398–402 (2002).
  • Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable ceramic crowns. J. Prosthet. Dent.67(5), 594–599 (1992).
  • Schaerer P, Sato T, Wohlwend A. A comparison of the marginal fit of three cast ceramic crown systems. J. Prosthet. Dent.59(5), 534–542 (1988).
  • Claus H. Das Hi-Ceram Verfahren. Metallfreie Kronen auf einem Keramikgerüst. Dent. Lab.35, 479–482 (1987).
  • Claus H. Vita In-Ceram, eine neues Verfahren zur Herstellung von oxid–keramischen Kronen–und Brückengerüsten. Quintessenz Zahntech.16, 35 (1990).
  • Kappert HF, Knode H. In-Ceram auf dem Prüfstand. Quintessenz Zahntech.16, 42 (1990).
  • Reichel K. Anwendungstechnische Aspekte des Vita In-Ceram-Systems. Dental Labor41, 1205–1215 (1993).
  • Kappert HF. Vollkeramik. Werkstoffkunde –Zahntechnik - klinische Erfahrung. Quintessenz Verlag, Berlin, Gemany (1996).
  • Kappert HF. Dental materials: new ceramic systems. Acad. Dental Mater. Trans.9, 180–199 (1996).
  • Wassermann A, Kaiser M, Strub JR. Clinical long-term results of VITA In-Ceram classic crowns and fixed partial dentures: a systematic literature review. Int. J. Prosthodont.19(4), 355–363 (2006).
  • Kappert HF, Knipp U, Wehrstein A, Kmitta M, Knipp J. Festigkeit von Zirkonoxid-verstärkten Vollkeramikbrücken aus In-Ceram. Dtsch. Zahnärztl. Z.50, 683–685 (1995).
  • Stookey SD. Catalyzed crystallization of glass in theory and practice. Ind. Eng. Chem.51, 805–808 (1959).
  • Beall GH. Structure, properties, and nucleation of glass–ceramics. In: Advances in Nucleation and Crystallization in Glass. Hench LL, Freiman SW (Eds). The American Ceramic Society-Wiley, OH, USA (1971).
  • Grossman DG. Structure and physical properties of Dicor/MGC glass–ceramic. In: International Symposium on Computer Restorations. Mörmann WH (Ed.). Quintessence, IL, USA (1991).
  • Malament KA, Grossman DG. Bonded vs. non bonded Dicor crowns: four years report. J. Dent. Res.71, 321 (1992).
  • Malament KA, Socransky SS. Survival of Dicor glass–ceramic dental restorations over 14 years: part I. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender, and age. J. Prosthet. Dent.81, 23–32 (1999).
  • Adair PJ, Grossmann DG. Die gegossene keramische Krone. Int. J. Par. Rest. Zahnheilk.4, 33 (1984).
  • Erpenstein H, Kerschbaum T. Frakturanfälligkeit von glas- und galvano-keramischen Kronen. Rostocker Medizinische Beiträge Universität Rostock4, 71 (1995).
  • Geller W, Kwiatowski SJ. Willi’s Glas: glaskeramische Synthese zur Vermeidung der Dunkel- und Schattenzonen im Gingivabereich. Quintessenz Zahntech.13, 39–57 (1987).
  • Beham G. IPS Empress – Eine neue Keramik-Technologie. Ivoclar Vivadent-Report6, 1–13 (1990).
  • Wohlwend A., Schärer P. Die Empress-Technik – ein neues Verfahren zur Herstellung von vollkeramischen Kronen, Inlays und Facetten. Quintessenz Zahntech.16, 966–978 (1990).
  • Höland W, Frank M. IPS Empress Glaskeramik. In: Metallfreie Restaurationenen aus Presskeramik. Haller B, Bischoff H (Eds). Quintessenz Verlag GmbH, Berlin, Germany (1993).
  • Dong JK, Lüthy H, Wohlwend A, Schärer P. Heat-pressed ceramics: technology and strength. Int.J. Prosthodont.5, 9 (1992)
  • Höland W, Rheinberger VM, Frank M, Schweiger M. Glass–ceramic for dental restoration. Bioceramics8, 299–301 (1995).
  • Heinzmann JL, Krejci I, Lutz F. Wear and marginal adaptation of glass–ceramic inlays, amalgam and enamel. J. Dent. Res.69, 161 (1990) (Abstract 423).
  • Fradeani M, Redemagni M. An 11-year clinical evaluation of leucite-reinforced glass–ceramic crown: a retrospective study. Quintessence Int.33, 503–510 (2002).
  • Frankenberger R, Petschelt A. Leucite-reinforced glass–ceramic inlays and onlays after six years: clinical behavior. Operative Dentistry25, 459–465 (2000).
  • Brodbeck U. Six years of clinical experience with an all-ceramic system. Signature4(3 Suppl.), 6–13 (1997).
  • Malamant KA. Presentation on clinical results of IPS Empress. Internal report (2007).
  • Krämer N, Lohbauer U, Frankenberger R. Adhesive luting of indirect restorations. Am. J. Dent.13(Spec. No), D60–D76 (2000).
  • Edelhoff D, Horstkemper T, Richter EJ, Spiekermann H, Yildirim M. Adhäsiv und konventionell befestigte Empress 1-Kronen: klinische Befunde nach vierjähriger Tragedauer. Dtsch Zahnarztl. Z.55, 326–330 (2000).
  • Strub JR, Türp JC, Witkowski S, Hürzeler MB, Kern M. Curriculum Prothetik Bd. 2: Artikulatoren, Ästhetik, Werkstoffkunde, Festsitzende Prothetik- Metall- und Vollkeramiksysteme in der Kronen-Brücken-Prothetik. Quintessenz, Berlin, Germany (2005).
  • Krämer N, Ebert J, Petschelt A, Frankenberger R. Ceramic inlays bonded with two adhesives after 4 years. Dent. Mater.22(1), 13–21 (2006).
  • Felden A, Schmalz G, Hiller KA. Retrospective clinical study and survival analysis on partial ceramic crowns: results up to 7 years. Clin. Oral Investig.4(4), 199–205 (2000).
  • Fradeani M. Six-year follow-up with Empress veneers. Int. J. Periodontics Restorative Dent.18(3), 216–225 (1998).
  • Frankenberger R, Petschelt A, Kramer N. Leucite-reinforced glass ceramic inlays and onlays after six years: clinical behavior. Oper. Dent.25(6), 459–465 (2000).
  • Guess PC, Stappert CF. Midterm results of a 5-year prospective clinical investigation of extended ceramic veneers. Dent. Mater.24(6), 804–813 (2008).
  • Rheinberger VM. Perspectives in dental ceramics. Glastech. Ber. Glass Sci. Technol.70C, 393–400 (1997).
  • Hölsch W, Kappert HF. Festigkeitsprüfung von vollkeramischem Einzelzahnersatz für den Front- und Seitenzahnbereich. Dtsch. Zahnärztl. Z.47, 621–623 (1992).
  • Witkowski S. Presskeramiken – Aktueller Überblick über die Systeme 2000. Quintessenz Zahntech.26(5), 452–486 (2000).
  • Höland W, Rheinberger V, Apel E et al. Clinical application of glass–ceramics in dentistry. J. Mat. Sci.: Mat. Med.17, 1037–1042 (2006).
  • Beall GH. Design of glass ceramics. Solid State Sci.129, 333–354 (1989).
  • Höland W, Wange P, Naumann K et al. Control of phase formation in glass–ceramics for medicine and technology. J. Non-Cryst. Sol.129, 152–162 (1991).
  • Datzmann G. Cerec Vitablocs Mark II machinable ceramic. In: CAD/CIM in Aesthetic Dentistry. Mörmann WH (Ed). Quintessence Pub. Co., IL, USA (1996).
  • Schweiger M. Materials properties of IPS Empress. Presented at: Scientific Meeting, Hohenems, Austria (2006).
  • Bühler P, Völkel T. Scientific documentation of IPS Empress CAD. Ivoclar Vivadent AG, Liechtenstein (2006).
  • Mörmann WH, Brandestini M. Chairside computer-aided direct ceramic inlays. Quintessence Int.20, 329–339 (1989).
  • Mehl A, Gloger W, Hickel R. Fully automatic CAD/CAM-fabrication of tooth restorations with a new precise 3D-scanning system. J. Dent. Res.79, 530 (2000).
  • Mörmann WH. 20 Jahre keramische CEREC CAD/CAM Restaurationen. Technischer Stand und klinische Bewährung. Zahnärztl. Mitt.96, 58–65 (2006).
  • Reich S, Wichmann M. Unterschiede zwischen den CEREC-3D-Software-Versionen 1000 und 15000. Int. J. Comp. Dentistry7, 47–60 (2004).
  • Luthard R, Rudolph H, Sandkuhl O, Walter M. Aktuelle CAD/CAM- Systeme zur Herstellung von keramischen Zahnersatz Teil I. Zahnärzt. Rundsch.110, 747 (2001).
  • Tinschert J, Natt G, Spiekermann H. Aktuelle Standortbestimmung von Dentalkeramiken. Dental Praxis18, 293–309 (2001).
  • Rekow ED. Prosthese by computer. NY State Dent. J.54, 21–22 (1988)
  • Durret F. CAD/CAM in dentistry. J. Am. Dent. Assoc.117, 715–720 (1988).
  • Becker J. CAD/CAM in der Zahnmedizin – Teil II. Deutsche Zahnärzteblatt105, 188 (1996).
  • Roulet J-F, Herder S. Seitenzahnversorgung mit adhäsiv befestigten Keramikinlays. Grundlagen, Herstellung und klinisches Vorgehen. Quintessenz Verlag-GmbH, Berlin, Germany (1989)
  • Reiss B. Eighteen-year clinical study in a dental practice. In: State of the Art of CAD/CAM Restorations 20 Years of CEREC. Mörmann WH (Ed.). Quintessence Publishing Company, Berlin, Germany, 57–64 (2006).
  • Kelly R. Machinable ceramics. In: State of the Art of CAD/CAM Restorations 20 Years of CEREC. Mörmann WH (Ed.). Quintessence Publishing Company, Berlin, Germany, 29–38 (2006).
  • Christensen RP, Galàn AD, Mosher TA. Clinical status of eleven CAD/CAD materials after one to twelve years of service. In: State of the Art of CAD/CAM Restorations 20 Years of CEREC. Mörmann WH (Ed.). Quintessence Publishing Company, Berlin, Germany, 9–18 (2006).
  • Christensen GJ. The future significance of CAD/CAM for dentistry. In: State of the Art of CAD/CAM Restorations 20 Years of Cerec. Mörmann WH (Ed). Quintessence Pub. Co., Berlin, Germany, 19–28 (2006).
  • Martin N, Jedynakiewicz NM. Clinical performance of CEREC ceramic inlays: a systematic review. Dent. Mater.15(1), 54–61 (1999).
  • Reiss B. Clinical results of Cerec inlays in a dental practice over a period of 18 years. Int. J. Comput. Dent.9(1), 11–22 (2006).
  • Posselt A, Kerschbaum T. Longevity of 2328 chairside Cerec inlays and onlays. Int. J. Comput. Dent.6(3), 231–248 (2003).
  • Mörmann WH, Brandestini M, Lutz F, Barbakow F, Gotsch T. CAD–CAM ceramic inlays and onlays: a case report after 3 years in place. J. Am. Dent. Assoc.120(5), 517–520 (1990).
  • Otto T, Schneider D. Long-term clinical results of chairside Cerec CAD/CAM inlays and onlays: a case series. Int. J. Prosthodont.21(1), 53–59 (2008).
  • Fasbinder DJ. Clinical performance of chairside CAD/CAM restorations. J. Am. Dent. Assoc.137(Suppl.), S22–S31 (2006).
  • Thordrup M, Isidor F, Horsted-Bindslev P. A prospective clinical study of indirect and direct composite and ceramic inlays: ten-year results. Quintessence Int.37(2), 139–144 (2006).
  • Wiedhahn K, Kerschbaum T, Fasbinder DF. Clinical long-term results with 617 Cerec veneers: a nine-year report. Int. J. Comput. Dent.8(3), 233–246 (2005).
  • Reich SM, Wichmann M, Rinne H, Shortall A. Clinical performance of large, all-ceramic CAD/CAM-generated restorations after three years: a pilot study. J. Am. Dent. Assoc.135(5), 605–612 (2004).
  • Sjogren G, Molin M, van Dijken JW. A 10-year prospective evaluation of CAD/CAM-manufactured (Cerec) ceramic inlays cemented with a chemically cured or dual-cured resin composite. Int. J. Prosthodont.17(2), 241–246 (2004).
  • Bindl A, Mormann WH. Survival rate of mono-ceramic and ceramic-core CAD/CAM-generated anterior crowns over 2–5 years. Eur. J. Oral Sci.112(2), 197–204 (2004).
  • Otto T, De Nisco S. Computer-aided direct ceramic restorations: a 10-year prospective clinical study of Cerec CAD/CAM inlays and onlays. Int. J. Prosthodont.15(2), 122–128 (2002).
  • Felden A, Schmalz G, Federlin M, Hiller KA. Retrospective clinical investigation and survival analysis on ceramic inlays and partial ceramic crowns: results up to 7 years. Clin. Oral Investig.2(4), 161–167 (1998).
  • Sjogren G, Molin M, van Dijken JW. A 5-year clinical evaluation of ceramic inlays (Cerec) cemented with a dual-cured or chemically cured resin composite luting agent. Acta Odontol. Scand.56(5), 263–267 (1998).
  • Berg NG, Derand T. A 5-year evaluation of ceramic inlays (CEREC). Swed. Dent. J.21(4), 121–127 (1997).
  • Krejci I, Lutz F, Reimer M. Marginal adaptation and fit of adhesive ceramic inlays. J. Dent.21(1), 39–46 (1993).
  • Mörmann W, Krejci I. Computer-designed inlays after 5 years in situ: clinical performance and scanning electron microscopic evaluation. Quintessence Int.23(2), 109–115 (1992).
  • Manhart J, Chen H, Hamm G, Hickel R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper. Dent.29(5), 481–508 (2004).
  • Federlin M, Wagner J, Manner T, Hiller KA, Schmalz G. Three-year clinical performance of cast gold vs ceramic partial crowns. Clin. Oral Investig.11(4), 345–352 (2007).
  • Schweiger M, Frank M, Rheinberger V, Höland W. New sintered glass–ceramic based on apatite and zirconia. Proceedings Int. Symp. Glass Problems2, 229–235 (1996).
  • Sorensen JA, Mito WT. Rational and clinical technique for esthetic restorations of endodontically treated teeth with the CosmoOst and IPS Empress Post system. Qunit. Dent. Technol.21, 81–90 (1998).
  • Sorensen JA, Cruz M, Mito WT, Merrideth H, Raffeiner O. Empress 2 all-ceramic bridge clinical trials: status 1998. J. Dent. Res.218 (1999).
  • Pospiech P, Rountree P, Unsöld F, Rammelsberg P. In-vitro-investigations on the fracture strength of all-ceramic posterior bridges of Empress II. J. Dent. Res.78, 307 (1999).
  • Schweiger M, Höland W, Frank M, Drescher H, Rheinberger VM. IPS Empress 2, a new pressable high strength glass–ceramic for esthetic all ceramic restoration. Quint. Dent. Technol.22, 143–152 (1999).
  • Höland W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress®2 and the IPS Empress® glass–ceramic. J. Biomed. Mater. Res. (Appl. Biomater.)53, 297–203 (2000).
  • Kistler S, Pospiech P, Frasch C, Gernet W. Clinical performance of Empress 2 lithium disilicate glass–ceramic posterior crown: results up to two years. J. Dent. Res.79, (2000).
  • Edelhoff D, Brauner J, Spiekermann H, Yilderim M. Two-year clinical evaluation of crowns and bridges made of IPS Empress 2. J. Dent. Res.81, 2584 (2002).
  • Sorensen JA, Berge HX, Edelhoff D. Effect of storage media and fatigue loading on ceramic strength. J. Dent. Res.79, 217 (2000).
  • Marquardt P, Strub JR. Survival rates of IPS empress 2 all-ceramic crowns and fixed partial dentures: results of a 5-year prospective clinical study. Quintessence Int.37, 253–259 (2006).
  • Tinschert J, Natt G, Spiekermann H: Aktuelle Standortbestimmung von Dentalkeramiken. Dental Praxis18, 293–309 (2001).
  • Rheinberger V. Vom Experiment zur Erfolgsgeschichte- Materialforschung eröffnet heute breites Indikationsspektrum. Die Zahnarzt Woche37, 14–15 (2005).
  • Kappert HF, Schweiger M, Rheinberger V. Das IPSe.max-System, Werkstoffkundliche Vielfalt. Dental Labor54, 613–624 (2006).
  • Bürke H Zwei Glaskeramiken auf dem neuesten Stand. Quintessenz Zahntech.32, 1316–1325 (2006).
  • Apel E, van’t Hoen C, Rheinberger V, Höland W. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass–ceramics derived from a multi-component system. J. Europ. Ceram. Soc.27, 1571–1577 (2007).
  • Höland W, Rheinberger V, Apel E, van’t Hoen C. Principles and phenomena of bioengineering with glass–ceramics for dental restoration. J. Europ. Ceram. Soc.27, 1521–1526 (2007).
  • Apel E, Deubener J, Bernard A et al. Phenomena and mechanisms of crack propagation in glass–ceramics. J. Mech. Behav. Biomed. Mat.1, 313–325 (2008).
  • Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent. Mat.20, 441–448 (2004).
  • Schweiger M. IPS e.max Ceram. Internal report; Ivoclar Vivadent AG, Liechtenstein, 25–36 (2006).
  • Edelhoff D. Presentation at: Dental Congress Ivoclar Vivadent AG. Hohenems, Austria (2006).
  • Anusavice KJ. Internal report; Ivoclar Vivadent AG, Liechtenstein (2005).
  • Nathanson D, Al-Harbi FA. Clinical performance and fit of a milled ceramic crown system. Presented at: IADR 86th General Session & Exhibition. ON, Canada, 2–5 July 2008 (Abstract 0303).
  • Bühler-Zemp P, Völkel T. Scientific Documentation IPS e.max CAD. Internal report; Ivoclar Vivadent AG, Liechtenstein (2007).
  • Haag P, Andersson M, Vult von Steyern P, Odén A. 15 years of clinical experience with Procera® Alumina. A Review. Appl. Osseointegrat. Res.4, 7–12 (2004).
  • Rodiger O, Kappert HF, Marinello CP. In-vitro-Bruchlasttests von 3-gliedrigen Seitenzahnbrücken hergestellt im Procera®-Verfahren. Schweiz. Monatsschr. Zahnmed.114, 207–213 (2004).
  • Lang B, Maló P, Guedes C et al. Procera® AllCeram Bridge. Appl. Osseointegrat. Res.4, 13–21 (2004).
  • Rühle M, Evens AG. High toughness ceramics and ceramic composites. Prog. Mat. Sci.33, 85–167 (1989).
  • Deville S, Guénin G, Chevalier J. Martensitic transformation in zirconia, part II. Martensite growth. Acta Mater.52, 5709–5721 (2004).
  • Schweiger M. Zirkoniumoxid – hochfeste und bruchzähe Strukturkeramik. Ästhetische Zahnmedizin5, 248–257 (2004).
  • Weber W, Rieger W. Key Engineering Materials192–195, 929–932 (2001).
  • Kosmac T, Swain MV, Claussen N. The role of tetragonal and monoclinic ZrO2 particles in the fracture toughness of Al2O3–ZrO2 Composites. Mater. Sci. Eng.71, 57–64 (1985).
  • Hahn R, Löst C. Sonoerosive Fertigung keramischer Zahnrestaurationen. Dtsch. Zahnärztl. Z.47, 734–739 (1992).
  • Hauptmann H, Suttor D, Frank S, Hoescheler H. Materials properties of all ceramic zirconia prostheses. Proceedings 78th IADR. DC, USA 2910 (2000).
  • Behrens A, Reusch B, Hauptmann H. Fracture strength of colored versus uncolored zirconia specimens. Proceedings 82nd IADR. HI, USA 10–13 March 2004 (Abstract 0243).
  • Pospiech P, Nothdurft F. Long-term behaviour of zirconia-based bridges Lava: results after three years in service. Proceedings 82nd IADR. HI, USA, 10–13 March 2004 (Abstract 0230).
  • Behrens A, Nesslauer H, Hauptmann H. Fracture strength of sandblasted and silicated colored and non-colored zirconia. Proceedings 83rd IADR. MD, USA, 9–12 March 2004 (Abstract 0558).
  • Filser F, Kocher P, Weibel F, Luthy H, Scharer P, Gauckler LJ. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int. J. Comput. Dent.4, 89–106 (2001).
  • Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dental Mat.23, 106–114 (2007).
  • Rothbrust F. IPS e.max ZirCAD. Internal report; Ivoclar Vivadent AG, Liechtenstein, 17–25 (2006).
  • Höland W, Ritzberger C, Apel E et al. Formation and crystal growth of needle-like fluoroapatite in functional glass–ceramics. J. Mater. Chem.18, 1318–1332 (2008).
  • Deville S, Chevalier J, Al Attaoui H. Atomic force microscopy study and qualitative analysis of martensite relief in zirconia. J. Am. Ceram. Soc.88, 1261–1267 (2005).
  • Kelly JR, Denry I. Stabilized zirconia as structural ceramic: an overview. Dental Mat.24(3), 289–298 (2008)
  • Hirata R, Viotti R, Reis AF, de Andrade OS. All-ceramic inlay-retained fixed partial bridge using a CAD-CAM produced Y-TZP framework and fluoroapatite veneering ceramic: a clinical report. Gen. Dent.55(7), 657–662 (2007).
  • Wolfart S, Ludwig K, Uphaus A, Kern M. Fracture strength of all-ceramic posterior inlay-retained fixed partial dentures. Dent. Mater.23(12), 1513–1520 (2007).
  • Wolfart S, Kern M. A new design for all-ceramic inlay-retained fixed partial dentures: a report of 2 cases. Quintessence Int.37(1), 27–33 (2006).
  • Ohlmann B, Gabbert O, Schmitter M, Gilde H, Rammelsberg P. Fracture resistance of the veneering on inlay-retained zirconia ceramic fixed partial dentures. Acta Odontol. Scand.63(6), 335–342 (2005).
  • Kilicarslan MA, Kedici PS, Kucukesmen HC, Uludag BC. In vitro fracture resistance of posterior metal-ceramic and all-ceramic inlay-retained resin-bonded fixed partial dentures. J. Prosthet. Dent.92(4), 365–370 (2004).
  • Edelhoff D, Spiekermann H, Yildirim M. Metallfreie Inlaybrücken. Quintessenz51, 613–625 (2000).
  • Edelhoff D, Weber V. Inlaybrücke mit CAD/CAM-gefertigtem Gerüst aus Zirkoniumdioxid-Keramik. Quintessenz Zahntechnik29(9), 1022–1032 (2003).
  • Sailer I, Pjetursson BE, Zwahlen M, Hammerle CH. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: fixed dental prostheses. Clin. Oral Implants Res.18(Suppl. 3), 86–96 (2007).
  • Att W, Grigoriadou M, Strub JR. ZrO2 three-unit fixed partial dentures: comparison of failure load before and after exposure to a mastication simulator. J. Oral Rehabil.34(4), 282–290 (2007).
  • Vult von Steyern P, Ebbesson S, Holmgren J, Haag P, Nilner K. Fracture strength of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J. Oral Rehabil.33(9), 682–689 (2006).
  • Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int. J. Prosthodont.14(3), 231–238 (2001).
  • Blatz MB. Long-term clinical success of all-ceramic posterior restorations. Quintessence Int.33, 415–426 (2002).
  • Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int. J. Prosthodont.20(4), 383–388 (2007).
  • Raigrodski AJ, Chiche GJ, Potiket N et al. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study. J. Prosthet. Dent.96(4), 237–244 (2006).
  • Sailer I, Feher A, Filser F et al. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int.37(9), 685–693 (2006).
  • Vult von Steyern P. All-ceramic fixed partial dentures. Studies on aluminum oxide- and zirconium dioxide-based ceramic systems. Swed. Dent. J. (Suppl. 173), 1–69 (2005).
  • Höland W, Rheinberger VM, Apel E et al. Future perspectives of biomaterials for dental restoration. J. Europ. Ceram. Soc. doi:10.1016/j.jerceramsoc.2008.08.023 (2008) (In Press).
  • Uo M, Sjogren G, Sundh A, Watari F, Bergman M, Lerner U. Cytotoxicity and bonding property of dental ceramics. Dent. Mater.19(6), 487–492 (2003).
  • Heintze SD, Cavalleri A, Forjanic M, Zellweger G, Rousson V. Wear of ceramic and antagonist – a systematic evaluation of influencing factors in vitro. Dent. Mater.24(4), 433–449 (2008).
  • Burke FJ, Grey NJ. Repair of fractured porcelain units: alternative approaches. Br. Dent. J.176(7), 251–256 (1994).
  • Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper. Dent.26(4), 367–374 (2001).
  • Fischer J, Stawarczyk B, Tomic M, Strub JR, Hammerle CH. Effect of thermal misfit between different veneering ceramics and zirconia frameworks on in vitro fracture load of single crowns. Dent. Mater. J.26(6), 766–772 (2007).
  • Taskonak B, Yan J, Mecholsky JJ Jr, Sertgoz A, Kocak A. Fractographic analyses of zirconia-based fixed partial dentures. Dent. Mater. (2008).

Patents

  • Daskalon G, Brodkin D, Karmakar A et al. High strength dental restoration.US2003/0183964 (2003).
  • Clasen R, Zeiner J. Verfahren zur Herstellung eines keramischen formkörpers mittels Elektrophorese und anschliessender Sinterung und dessen Verwendung. DE102006036663 (2006).
  • Wolz S. Process for producing articles from ceramic and metal by electrophoretic free forming. WO2007/110010 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.