275
Views
89
CrossRef citations to date
0
Altmetric
Review

Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery

&
Pages 759-768 | Published online: 09 Jan 2014

References

  • Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin. Neurophysiol.14(4), 651–655 (2003).
  • Pauly PJ. The political structure of the brain: cerebral localization in Bismarckian Germany. Electroneurobiolohia14(1), 25–32 (2005).
  • Gross CG. The discovery of motor cortex and its background. J. Hist. Neurosci.16, 320–331 (2007).
  • Bishop GH, O’Leary JL. The effects of polarizing currents on cell potentials and their significance in the interpretation of central nervous system activity. Electroencephalogr. Clin. Neurophysiol.2(4), 401–416 (1950).
  • Bishop GH, Erlanger J. The effects of polarization upon the activity of vertebrate nerve. Am. J. Physiol.78, 630–657 (1926).
  • Bindman LJ, Lippold OC, Redfearn JW. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents. Nature10(196), 584–585 (1962).
  • Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarization on the cerebral cortex of rat (1) during the current flow and (2) in the production of long lasting after effects. J. Physiol.172, 369–382 (1964).
  • Redfearn JW, Lippold OC, Constain R. A preliminary account of the clinical effects of polarizing the brain in certain psychiatric disorders. Br. J. Psychiatry110, 773–785 (1964).
  • Lippold OC, Redfearn JW. Mental changes resulting from the passage of small direct currents through the human brain Br. J. Psychiatry110, 768–772 (1964).
  • Costain R, Redfearn JW, Lippold OC. A controlled trial of therapeutic effect of polarization of the brain in depressive illness. Br. J. Psychiatry110, 786–799 (1964).
  • Arfai E, Theano G, Montagu JD, Robin AA. A controlled study of polarization in depression. Br. J. Psychiatry116(533), 433–434 (1970).
  • Hall KM, Hicks RA, Hopkins HK. The effects of low level DC scalp positive and negative current on the performance of various tasks. Br. J. Psychiatry117(541), 689–691 (1970).
  • Lifshitz K, Harper P. A trial of transcranial polarization in chronic schizophrenics. Br. J. Psychiatry114(510), 635–637 (1968).
  • Priori A BA, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport9(10), 2257–2260 (1998).
  • Nitsche MA, Liebetanz D, Tergau F, Paulus W. Modulation of cortical excitability by transcranial direct current stimulation. Nervenarzt73(4), 332–335 (2002).
  • Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology57(10), 1899–1901 (2001).
  • Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol.527(Pt 3), 633–639 (2000).
  • Nitsche MA, Seeber A, Frommann K et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol.568(1), 291–303 (2005).
  • Vines BW, Nair DG, Schlaug G. Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport17(6), 671–674 (2006).
  • Vines BW, Schnider NM, Schlaug G. Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. Neuroreport17(10), 1047–1050 (2006).
  • Rogalewski A, Breitenstein C, Nitsche MA, Paulus W, Knecht S. Transcranial direct current stimulation disrupts tactile perception. Eur. J. Neurosci.20(1), 313–316 (2004).
  • Nitsche MA, Seeber A, Lang N et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci.15(4), 619–626 (2003).
  • Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann KP, Paulus W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J. Cogn. Neurosci.16(4), 521–527 (2004).
  • Kincses TZ, Antal A, Nitsche MA, Bártfai O, Paulus W. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia42(1), 113–117 (2004).
  • Gandiga PC, Hummel F, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol.117(114), 845–850 (2006).
  • Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology64(5), 872–875 (2005).
  • Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (TDCS) in humans. Clin. Neurophysiol.114, 2220–2222 (2003).
  • McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng.37, 996–1001 (1990).
  • Yuen TG, Agnew WF, Bullara LA, Jacques S, McCreery DB. Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery9, 292–299 (1981).
  • Hattori Y, Moriwaki A, Hori Y. Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci. Lett.116, 320–324 (1990).
  • Moriwaki A. Polarizing currents increase noradrenaline-elicited accumulation of cyclic AMP in rat cerebral cortex. Brain Res.544(2), 248–252 (1991).
  • Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res.684(2), 206–208 (1995).
  • Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain125(Pt 10), 2238–2247 (2002).
  • Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J. Physiol.586(2), 653–663 (2005).
  • Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol.117, 1623–1629 (2006).
  • Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage35(3), 1113–1124 (2007).
  • Clarke PJ, Black SE, Badley EM, Lawrence JM, Williams JI. Handicap in stroke survivors. Disabil. Rehabil.21(3), 116–123 (1996).
  • Kreisel SH, Bazner H, Hennerici MG. Pathophysiology of stroke rehabilitation: temporal aspects of neurofunctional recovery. Cerebrovasc. Dis.21, 6–17 2006
  • Webster BR, Celnik PA, Cohen LG. Noninvasive brain stimulation in stroke rehabilitation. NeuroRx3(4), 474–481 (2006).
  • Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann. Neurol.59(5), 735–742 (2006).
  • Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann. Neurol.33, 181–189 (1993).
  • Cramer SC, Nelles G, Benson RR et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke28, 2518–2527 (1997).
  • Seitz RJ, Höflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch. Neurol.55, 1081–1088 (1998).
  • Nair DG, Hutchinson S, Fregni F, Alexander M, Pascual-Leone A, Schlaug G. Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage34(31), 253–263 (2007).
  • Loubinoux I, Carel C, Pariente J et al. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage20(4), 2166–2180 (2003).
  • Caramia MD, Iani C, Bernardi G. Cerebral plasticity after stroke as revealed by ipsilateral responses to magnetic stimulation. Neuroreport7, 1756–1760 (1996).
  • Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr. Clin. Neurophysiol.101, 316–328 (1996).
  • Bastings EP, Greenberg JP, Good DC. Hand motor recovery after stroke: a transcranial magnetic stimulation mapping study of motor output areas and their relation to functional status. Neurorehabil. Neural Repair16, 275–282 (2002).
  • Liepert J, Hamzei F, Weiller C. Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve,23, 1761–1763 (2000).
  • Murase N, Duque J, Mazzocchio, R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol.55(3), 400–409 (2004).
  • Duque JHF. Transcallosal inhibition in chronic subcortical stroke. Neuroimage28(4), 940–946 (2005).
  • Schaechter JD, Kraft E, Hilliard TS et al. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil. Neural Repair16, 326–338 (2002).
  • Fries W, Danek A, Scheidtmann K, Hamburger C. Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain116(2), 369–382 (1993).
  • Pineiro R, Pendlebury ST, Smith S et al. Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke31, 672–679 (2000).
  • Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain125(12), 2731–2742 (2002).
  • Carey LM, Abbott DF, Puce A, Jackson GD, Syngeniotis A, Donnan GA. Reemergence of activation with poststroke somatosensory recovery: a serial fMRI case study. Neurology59, 749–752 (2002).
  • Barbay S, Plautz EJ, Friel KM et al. Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys. Exp. Brain Res.169(161), 106–116 (2006).
  • Plautz EJ, Barbay S, Frost SB et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol. Res.25(8), 801–810 (2003).
  • Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA. Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol. Res.25(8), 794–800 (2003).
  • Kleim JA, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D. Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol. Res.25(8), 789–793 (2003).
  • Adkins-Muir DL, Jones TA. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurol. Res.25(8), 780–788 (2003).
  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci.16, 785–807 (1996).
  • Brown JA, Lutsep H, Cramer SC, Weinand M. Motor cortex stimulation for enhancement of recovery after stroke: case report. Neurol. Res.25(8), 815–818, (2003).
  • Brown JA, Lutsep H, Weinand M, Cramer SC. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery58(3), 464–473 (2006).
  • Levy RM, Benson RR, Winstein CJ. Cortical stimulation for upper-extremity hemiparesis from ischemic stroke. Stroke39, 568 (2008).
  • Mansur CG, Fregni F, Boggio PS et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology64(10), 1802–1804 (2005).
  • Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Hamdy A. Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease. Mov. Disord.21, 2201–2205 (2006).
  • Boggio PS, Alonso-Alonso M, Mansur CG et al. Hand function improvement with low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere in a severe case of stroke. Am. J. Phys. Med. Rehabil.85, 927–930 (2006).
  • Fregni F, Boggio PS, Mansur CG et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport16(14), 1551–1555 (2005).
  • Hesse S, Werner C, Schonhardt EM, Bardeleben A, Jenrich W, Kirker SG. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor. Neurol. Neurosci.25(1), 9–15 (2007).
  • Nair DN, Renga V, Hamelin S, Pascual-Leone A, Schlaug G. Improving motor function in chronic stroke patients using simultaneous occupational therapy and tDCS. Stroke39, 542 (2008).
  • Hummel F, Celnik P, Giraux P et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain128(3), 490–499 (2005).
  • Hummel FC, Voller B, Celnik P et al. Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci.7, 73 (2006).
  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain123(3), 572–584 (2000).
  • Stefan K, Kunech E, Benecke R, Cohen LG, Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J. Physiol.543(2), 699–708 (2002).
  • Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neorcortex. Science290, 533–536 (2000).
  • Vines BW, Nair DG, Schlaug G. Modulating motor cortex excitability leads to hemispheric differences in direct and indirect motor effects. Eur. J. Neurosci.17(6), 671–674 (2008).
  • Vines BW, Cerruti C, Schlaug G. Dual-hemisphere transcranial direct current stimulation facilitates greater improvements in motor performance compared to uni-hemisphere stimulation. BMC Neurosci.9, 103 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.