649
Views
70
CrossRef citations to date
0
Altmetric
Review

Surface coatings for ventricular assist devices

, &
Pages 51-60 | Published online: 09 Jan 2014

References

  • Allan R, Kass M, Glover C, Haddad H. Cellular transplantation: future therapeutic options. Curr. Opin. Cardiol.22(2), 104–110 (2007).
  • Hogness JR, VanAntwerp M. The Artificial Heart: Prototypes, Policies and Patients. National Academy Press, DC, USA (1991).
  • Mancini DM, Beniaminovitz A, Levin H et al. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation98, 2383–2389 (1998).
  • Stevenson LW, Miller LW, Desvigne-Nickens P et al. Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical Assistance in Treatment of Chronic Heart Failure). Circulation110, 975–981 (2004).
  • Cho S-W, Jeon O, Lim JE et al. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. J. Vasc. Surg.44(6), 1329–1340 (2006).
  • Maher TR, Butler KC, Poirier VL, Gernes DB. HeartMate left ventricular assist devices: a multigeneration of implanted blood pumps. Artif. Organs25(5), 422–426 (2001).
  • DeBakey ME, Noon GP, Teitel ER. The rotary blood pump: lessons learned and future directions. Artif. Organs28(10), 865–868 (2004).
  • Slaughter M, Tsui S, El-Banayosy A et al. Results of a multicenter clinical trial with the Thoratec implantable ventricular assist device. J. Thorac. Cardiovasc. Surg.133(6), 1573–1580 (2007).
  • Kirklin JK, Naftel DC, Bourge RC et al. Evolving trends in risk profiles and causes of death after heart transplantation: a ten-year multi-institutional study. J. Thorac. Cardiovasc. Surg.125, 881–890 (2003).
  • Jaski BE, Kim JC, Naftel DC et al. Cardiac transplant outcome of patients supported on left ventricular assist device versus intravenous inotropic therapy. J. Heart Lung Transplant.20(4), 449–456 (2001).
  • Birks EJ, Tansley PD, Hardy J et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med.355(18), 1873–1884 (2006).
  • Lavee J, Paz Y. Mechanical alternatives to the human heart: paracorporeal assist systems. Isr. Med. Assoc. J.4, 125–130 (2002).
  • Park CY, Park JW, Lee JJ et al. Development of totally implantable pulsatile biventricular assist device. Artif. Organs27(1), 119–123 (2003).
  • Throckmorton AL, Woood HG, Day SW et al. Design of a continuous flow centrifugal pediatric ventricular assist device. Int. J. Artif. Organs26(11), 1015–1031 (2003).
  • Akamatsu T, Nakazeki T, Itoh H. Centrifugal blood pump with a magnetically suspended impeller. Artif. Organs16(3), 305–308 (1992).
  • Goldstein DJ, Smego D, Michler RE. Surgical aspects of congestive heart failure. Heart Fail. Rev.11, 171–192 (2006).
  • Yamane T. The present and future state of nonpulsatile artificial heart technology. Artif. Organs5(3), 149–155 (2002).
  • Goldstein DJ, Zucker M, Arroyo L et al. Safety and feasibility trial of the MicroMed DeBakey ventricular assist device as a bridge to transplantation. J. Am. Coll. Cardiol.45(6), 962–963 (2005).
  • Kihara S, Yamazaki K, Litwak KN et al.In vivo evaluation of a MPC polymer coated continuous flow left ventricular assist system. Artif. Organs27(2), 188–192 (2003).
  • Griffith BP, Kormos RL, Borovetz HS et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann. Thorac. Surg.71, S116–S120 (2001).
  • Hetzer R, Weng Y, Potapov EV et al. First experiences with a novel magnetically suspended axial flow left ventricular assist device. Eur. J. Cardiothorac. Surg.25, 964–970 (2004).
  • Esmore D, Spratt P, Larbalestier R et al. VentrAssist™ left ventricular assist device: clinical trial results and clinical development plan update. Eur. J. Cardiothorac. Surg.32, 735–744 (2007).
  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science: an Introduction to Materials in Medicine. Academic Press, Amsterdam, The Netherlands (2004).
  • Copeland J, Smith R, Arabia F; the CardioWest Total Artificial Heart Investigators. Cardiac replacement with a total artificial heart as a bridge to transplantation. N. Engl. J. Med.351, 575–577 (2004).
  • Asai T, Leeb M-H, Arrecubieta C et al. Cellular coating of the left ventricular assist device textured polyurethane membrane reduces adhesion of Staphylococcus aureus. J. Thorac. Cardiovasc. Surg.133, 1147–1153 (2007).
  • Wieneke H, Sawitowski T, Wnendt S et al. Stent coating: a new approach in interventional cardiology. Herz27(6), 518–526 (2002).
  • Harman MK, Banks SA, Hodge WA. Wear analysis of a retrieved hip implant with titanium nitride coating. Arthroplasty12(8), 938–944 (1997).
  • Prengel H, Pfouts W, Santhanam A. State of the art in hard coatings for carbide cutting tools. Surface & Coatings Technology102(3), 183–190 (1998).
  • Dion I, Roques X, More N et al.Ex vivo leucocyte adhesion and protein adsorption on TiN. Biomaterials14(9), 712–719 (1993).
  • Dion I, Rouais F, Trut L et al. TiN coating: surface characterization and haemocompatibility. Biomaterials14(3), 169–176 (1993).
  • Montiès JR, Dion I, Havlik P et al. Cora rotary pump for implantable left ventricular assist device: biomaterial aspects. Artif. Organs21(7), 730–734 (1997).
  • Antaki J, Burgreen G, Wu Z et al. Development progress of the University of Pittsburgh streamliner: a mixed flow blood pump with magnetic bearings. ASAIO J.46(2), 194 (2000).
  • Alanazi A, Nojiri C, Kido T et al. Engineering analysis of diamond-like carbon coated polymeric materials for biomedical applications. Artif. Organs28(8), 624–627 (2000).
  • Dion I, Roques X, Baquey C et al. Hemocompatibility of diamond-link carbon coating. Biomed. Mater. Eng.3(1), 51–55 (1993).
  • Jones MI, McColl IR, Grant DM, Parker KG, Parker TL. Protein adsorption and platelet attachment and activation, on TiN, Tic, and DLC coatings on titanium for cardiovascular applications. J. Biomed. Mater. Res.52(2), 413–421 (2000).
  • Schaub R, Kameneva M, Borovetz H, Wagner W. Assessing acute platelet adhesion on opaque metallic and polymeric biomaterials with fiber optic microscopy. J. Biomed. Mater. Res.49(4), 460–468 (2000).
  • Krishnan LK, Varghese N, Muraleedharan CV et al. Quantitation of platelet adhesion to Ti and DLC-coated Ti in vitro using 125I-labeled platelets. Biomol. Eng.19(2–6), 251–253 (2002).
  • Yamazaki K, Litwak P, Tagusari O et al. An implantable centrifugal blood pump with a recirculating purge system (cool-seal system). Artif. Organs22(6), 466–474 (1998).
  • van der Meer AL, James NL, Edwards GA et al. Initial in vivo experience of the VentrAssist implantable rotary blood pump in sheep. Artif. Organs27(1), 21–26 (2003).
  • Snyder TA, Tsukui H, Kihara SI et al. Preclinical biocompatibility assessment of the EVAHEART ventricular assist device: coating comparison and platelet activation. J. Biomed. Mater. Res. A81A(1), 85–92 (2006).
  • Shirakura A, Nakaya M, Koga Y et al. Diamond-like carbon films for PET bottles and medical applications. Thin Solid Films494(1–2), 84–91 (2006).
  • Nakabayashi N, Williams DF. Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials24(13), 2431–2435 (2003).
  • Ishihara K. New polymeric biomaterials-phosholipid polymers with a biocompatible surface. Front. Med. Biol. Eng.10(2), 83–95 (1999).
  • Yamazaki K, Kihara S, Akimoto T et al. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn. J. Thorac. Cardiovasc. Surg.50(11), 461–465 (2002).
  • Yamazaki K. Blood Pump and Ventricular Assist Device. Sun Medical Technology Research Corporation, PA, USA (2004).
  • Riesenfeld J, Olsson P, Sanchez J, Mollnes T. Surface modification with functionally active heparin. Med. Device Technol.6(2), 24–31 (1995).
  • Anderson AB, Clapper DL. Coatings for blood-contacting devices. Med. Plas. Biomat.3, 16–20 (1998).
  • Christensen K, Larsson R, Emanuelsson H, Elgue G, Larsson A. Heparin coating of the stent graft – effects on platelets, coagulation and complement activation. Biomaterials22(4), 349–355 (2001).
  • Tan Q, Ji J, Barbosa M, Fonseca C, Shen J. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials24(25), 4699–4705 (2003).
  • Koster A, Loebe M, Sodian R et al. Heparin antibodies and thromboembolism in heparin-coated and noncoated-ventricular assist devices. J. Thorac. Cardiovasc. Surg.121, 331–335 (2001).
  • Zhou Z, Meyerhoff M. Preparation and characterization of polymeric coatings with eombined nitric oxide release and immobilized active heparin. Biomaterials26(33), 6506–6517 (2005).
  • Graham TR, Dasse K, Coumbe A et al. Neo-intimal development on textured biomaterial surfaces during clinical use of an implantable left ventricular assist device. Eur. J. Cardiothorac. Surg.4, 182–190 (1990).
  • Rose EA, Levin HR, Oz MC et al. Artificial circulatory support with textured interior surfaces. A counterintuitive approach to minimizing thromboembolism. Circulation90(5 Pt 2), II87–II91 (1994).
  • Zapanta C, Griffith J, Hess G et al. Microtextured materials for cirulatory support devices: preliminary studies. ASAIO J.52(1), 17–23 (2006).
  • Fujisawa N, Odell R, Poole-Warren L et al. Acute cellular interaction with textured surfaces in blood contact. J. Biomed. Mater. Res.52(3), 517–527 (2000).
  • Fujisawa N, Poole-Warren L, Woodard J, Bertram C, Schindhelm K. A novel textured surface for blood-contact. Biomaterials20(10), 955–962 (1999).
  • Jing F, Wang L, Fu R et al. Behavior of endothelial cells on micro-patterned titanium oxide fabricated by plasma immersion ion implantation and deposition and plasma etching. Surface & Coatings Technology201(15), 6874–6877 (2007).
  • Bernhard W, LaFarge C, Robinson T et al. An improved blood-pump interface for left-ventricular bypass. Ann. Surg.168(4), 750–764 (1968).
  • Dasse K, Chipman S, Sherman C, Levine A, Frazier O. Clinical experience with textured blood contacting surfaces in ventricular assist devices. ASAIO Trans.33(3), 418–425 (1987).
  • Frazier OH, Baldwin RT, Eskin SG, Duncan JM. Immunochemical identification of human endothelial cells on the lining of a ventricular assist device. Tex. Heart Inst. J.20(2), 78–82 (1993).
  • Salih V, Graham T, Berry C et al. The lining of textured surfaces in implantable left ventricular assist devices: an immunocytochemical and electronmicroscopic study. Am. J. Cardiovasc. Pathol.4(4), 317–325 (1993).
  • Farrar DJ, Bourque K, Dague CP, Cotter CJ, Poirier VL. Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor. ASAIO J.53(3), 310–315 (2007).
  • Nikolaychik VV, Wankowski DM, Samet MM, Lelkes PI. In vitro testing of endothelial cell monolayers under dynamic conditions inside a beating ventricular prosthesis. ASAIO J.42(5), M487–M494 (1996).
  • Scott-Burden T, Tock C, Bosely J et al. Nonthrombogenic, adhesive cellular lining for left ventricular assist devices. Circulation10(98), II339–II345 (1998).
  • Zhu Y, Gao C, Liu X, Shen J. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules3(6), 1312–1319 (2002).
  • Zhu Y, Gao C, Guan J, Shen J. Engineering porous polyurethane scaffolds by photografting polymerization of methacrylic acid for improved endothelial cell compatibility. J. Biomed. Mater. Res. A67A(4), 1367–1373 (2003).
  • Wang D, Ji J, Sun Y et al.In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Biomacromolecules3, 1286–1295 (2002).
  • Sreerekha P, Krishnan L. Cultivation of endothelial progenitor cells on fibrin matrix and layering on dacron/polytetrafluoroethylene vascular grafts. Artif. Organs30(4), 242–249 (2006).
  • Zhang J, Qi H, Wang H et al. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft. Artif. Organs30(12), 898–905 (2006).

Patent

  • ASAIO R. Textured conforming shell for stabilization of the interface of precision heart assist device components to tissues. US0299297 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.