213
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Targeting the intestinal L-cell for obesity and type 2 diabetes treatment

, , &

References

  • Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9(1), 13–27 (2013).
  • Ryan D, Bray G. Pharmacologic treatment options for obesity: what is old is new again. Curr. Hypertens. Rep. 15(3), 182–189 (2013).
  • Diana R, Raj P, Stephanie KL, Cintia C, David CWL. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 335, 1194 (2007).
  • Kirk SFL, Penney TL, McHugh TL, Sharma AM. Effective weight management practice: a review of the lifestyle intervention evidence. Int. J. Obes. 36(2), 178–185 (2012).
  • Colquitt JL, Picot J, Loveman E, Clegg AJ. Surgery for obesity. Cochrane Database Syst. Rev. (2), CD003641 (2009).
  • DeFronzo RA, Abdul-Ghani MA. Preservation of beta-cell function: the key to diabetes prevention. J. Clin. Endocrinol. Metab. 96(8), 2354–2366 (2011).
  • DeFronzo RA. Overview of newer agents: where treatment is going. Am. J. Med. 123(3 Suppl.), S38–S48 (2010).
  • Grunberger G. Novel therapies for management of type 2 diabetes mellitus part 2 – addressing the incretin defect in clinical setting in 2013. J. Diabetes 5(3), 241–253 (2013).
  • Egerod KL, Engelstoft MS, Grunddal KV et al. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 153(12), 5782–5795 (2012).
  • Habib AM, Richards P, Rogers GJ, Reimann F, Gribble FM. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia 56(6), 1413–1416 (2013).
  • Habib AM, Richards P, Cairns LS et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153(7), 3054–3065 (2012).
  • Mortensen K, Christensen LL, Holst JJ, Orskov C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul. Pep. 114(2G), 189–196 (2003).
  • Holst JJ. Incretin hormones and the satiation signal. Int. J. Obes. 37(9), 1161–1168 (2013).
  • Holst JJ. The physiology of glucagon-like peptide 1. Physiol. Rev. 87(4), 1409–1439 (2007).
  • Baldissera FG, Holst JJ, Knuhtsen S, Hilsted L, Nielsen OV. Oxyntomodulin (glicentin-(33-69)): pharmacokinetics, binding to liver cell membranes, effects on isolated perfused pig pancreas, and secretion from isolated perfused lower small intestine of pigs. Regul. Pept. 21(1–2), 151–166 (1988).
  • Pedersen J, Ugleholdt RK, Jorgensen SM et al. Glucose metabolism is altered after loss of L cells and alfa cells but not influenced by loss of K cells. Am. J. Physio. Endocrinol. Metab. 304(1), e60–e73 (2013).
  • Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J. Compar. Physiol. Psychol. 84(3), 488–495 (1973).
  • Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Exp. Diabetes Res. 2012, 824305 (2012).
  • Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin-glucose axis. Front. Neurosci. 7, 51 (2013).
  • Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr. J. 57(5), 359–372 (2010).
  • Sumithran P, Proietto J. The defence of body weight: a physiological basis for weight regain after weight loss. Clin. Sci. (Lond.) 124(4), 231–241 (2013).
  • Chaudhri OB, Salem V, Murphy KG, Bloom SR. Gastrointestinal satiety signals. Ann. Rev. Physiol. 70, 239–255 (2008).
  • Wang C, Bomberg E, Billington CJ, Levine AS, Kotz CM. Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Res. 1336, 66–77 (2010).
  • Jo YH, Chua S Jr. Transcription factors in the development of medial hypothalamic structures. Am. J. Physiol. Endocrinol. Metab. 297(3), e563–e567 (2009).
  • Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature 444(7121), 854–859 (2006).
  • Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 Neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153(2), 647–658 (2012).
  • Hansen L, Deacon CF, Orskov C, Holst JJ. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140(11), 5356–5363 (1999).
  • Hjollund KR, Deacon CF, Holst JJ. Dipeptidyl peptidase-4 inhibition increases portal concentrations of intact glucagon-like peptide-1 (GLP-1) to a greater extent than peripheral concentrations in anaesthetised pigs. Diabetologia 54(8), 2206–2208 (2011).
  • Ruttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 150(3), 1174–1181 (2009).
  • Abbott CR, Monteiro M, Small CJ et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044(1), 127–131 (2005).
  • Bucinskaite V, Tolessa T, Pedersen J et al. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol. Motil. 21(9), 978–e78 (2009).
  • Moran TH, Baldessarini AR, Salorio CF, Lowery T, Schwartz GJ. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am. J. Physiol. 272(4), R1245–R1251 (1997).
  • Koda S, Date Y, Murakami N et al. The role of the vagal nerve in peripheral PYY3-36 induced feeding reduction in rats. Endocrinology 146(5), 2369–2375 (2005).
  • Plamboeck A, Veedfald S, Deacon CF et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 304(12), G1117–G1127 (2013).
  • Nakagawa A, Satake H, Nakabayashi H et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton. Neurosci. 110(1), 36–43 (2004).
  • Vahl TP, Tauchi M, Durler TS et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 148(10), 4965–4973 (2007).
  • Liu WY, Wang ZB, Zhang LC, Wei X, Li L. Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci. Ther. 18(8), 609–615 (2012).
  • Fry M, Ferguson AV. The sensory circumventricular organs: Brain targets for circulating signals controlling ingestive behavior. Physiol. Behav. 91(4), 413–423 (2007).
  • Orskov C, Poulsen SS, Moller M, Holst JJ. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 45(6), 832–835 (1996).
  • Kastin A, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 18(1–2), 7–14 (2002).
  • Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 150(4), 1680–1687 (2009).
  • Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101(3), 515–520 (1998).
  • Degen L, Oesch S, Casanova M et al. Effect of peptide YY 3–36 on food intake in humans. Gastroenterology 129(5), 1430–1436 (2005).
  • Lieverse RJ, Jansen JB, Masclee AA, Lamers CB. Satiety effects of a physiological dose of cholecystokinin in humans. Gut 36(2), 176–179 (1995).
  • Baraboi ED, Smith P, Ferguson AV, Richard D. Lesions of area postrema and subfornical organ alter exendin-4-induced brain activation without preventing the hypophagic effect of the GLP-1 receptor agonist. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298(4), R1098–R1110 (2010).
  • le Roux CW, Welbourn R, Werling M et al. Gut hormones as mediators of appetite and weight loss after roux-en-Y gastric bypass. Ann. Surg. 246(5), 780–785 (2007).
  • Dirksen C, Jorgensen NB, Bojsen-Moller KN et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int. J. Obes. (Lond.) doi:10.1038/ijo.2013.15 (2013) ( Epub ahead of print).
  • Rehfeld JF, Agersnap M. Unsulfated cholecystokinin: an overlooked hormone? Regul. Pept. 173(1–3), 1–5 (2012).
  • Wank SA, Pisegna JR, de WA. Brain and gastrointestinal cholecystokinin receptor family: structure and functional expression. Proc. Natl Acad. Sci. USA 89(18), 8691–8695 (1992).
  • Deacon CF, Knudsen LB, Madsen K, Wiberg FC, Jacobsen O, Holst JJ. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia 41(3), 271–278 (1998).
  • Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol. Metab. 80(3), 952–957 (1995).
  • Nauck MA, Homberger E, Siegel EG et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63(2), 492–498 (1986).
  • Holst JJ, Knop FK, Vilsboll T, Krarup T, Madsbad S. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 34( Suppl. 2), S251–S257 (2011).
  • Heer J, Rasmussen C, Coy DH, Holst JJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51(12), 2263–2270 (2008).
  • Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, Holst JJ. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59(7), 1765–1770 (2010).
  • Baggio LL, Drucker DJ. Biology of Incretins: GLP-1 and GIP. Gastroenterology 132(6), 2131–2157 (2007).
  • Astrup A, Rössner S, Van Gaal L et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374(9701), 1606–1616 (2007).
  • Astrup A, Carraro R, Finer N et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int. J. Obes. 36(6), 843–854 (2012).
  • Vrang N, Larsen PJ. Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog. Neurobiol. 92(3), 442–462 (2010).
  • Nauck MA. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am. J. Med. 124(1 Suppl.), S3–S18 (2011).
  • Davidson JA. Advances in therapy for type 2 diabetes: GLP-1 receptor agonists and DPP-4 inhibitors. Cleve. Clin. J. Med. 76( Suppl. 5), S28–S38 (2009).
  • Dicker D. DPP-4 inhibitors: impact on glycemic control and cardiovascular risk factors. Diabetes Care 34( Suppl. 2), S276–S278 (2011).
  • Holst JJ. Glucagon and glucagon-like peptides 1 and 2. Results Probl. Cell Differ. 50, 121–135 (2010).
  • Kissow H, Viby NE, Hartmann B et al. Exogenous glucagon-like peptide-2 (GLP-2) prevents chemotherapy-induced mucositis in rat small intestine. Cancer Chemother. Pharmacol. 70(1), 39–48 (2012).
  • Askov-Hansen C, Jeppesen PB, Lund P, Hartmann B, Holst JJ, Henriksen DB. Effect of glucagon-like peptide-2 exposure on bone resorption: Effectiveness of high concentration versus prolonged exposure. Regul. Pept. 181, 4–8 (2013).
  • Tang-Christensen M, Larsen PJ, Thulesen J, Romer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat. Med. 6(7), 802–807 (2000).
  • Sorensen LB, Flint A, Raben A, Hartmann B, Holst JJ, Astrup A. No effect of physiological concentrations of glucagon-like peptide-2 on appetite and energy intake in normal weight subjects. Int. J. Obes. Relat. Metab. Disord. 27(4), 450–456 (2003).
  • Schmidt PT, Näslund E, Grybäck P et al. Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul. Pep. 116(1–3), 21–25 (2003).
  • Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89(5), 1070–1077 (1985).
  • Simpson K, Parker J, Plumer J, Bloom S. CCK, PYY and PP: the control of energy balance. Handb. Exp. Pharmacol. (209), 209–230 (2012).
  • Lluis F, Fujimura M, Gomez G, Salva JA, Greeley GH Jr, Thompson JC. [Cellular localization, half-life, and secretion of peptide YY]. Rev. Esp. Fisiol. 45(4), 377–384 (1989).
  • Rudnicki M, Kuvshinoff BW, McFadden DW. Extrinsic neural contribution to ileal peptide YY (PYY) release. J. Surg. Res. 52(6), 591–595 (1992).
  • Batterham RL, Cowley MA, Small CJ et al. Physiology: does gut hormone PYY3-36 decrease food intake in rodents? (reply). Nature 430, 6996 (2004).
  • Batterham RL, Cohen MA, Ellis SM et al. Inhibition of food intake in obese subjects by peptide YY3. N. Engl. J. Med. 349(10), 941–948 (2003).
  • De SA, Bloom SR. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 6(1), 10–20 (2012).
  • Ghamari-Langroudi M, Colmers WF, Cone RD. PYY3-36 inhibits the action potential firing activity of POMC neurons of arcuate nucleus through postsynaptic Y2 receptors. Cell Metab. 2(3), 191–199 (2005).
  • Holst JJ. Enteroglucagon. Ann. Rev. Physiol. 59, 257–271 (1997).
  • Read N, French S, Cunningham K. The role of the gut in regulating food intake in man. Nutr. Rev. 52(1), 1–10 (1994).
  • Holst JJ. Evidence that enteroglucagon (II) is identical with the C-terminal sequence (residues 33–69) of glicentin. Biochem. J. 207(3), 381–388 (1982).
  • Bataille D, Gespach C, Tatemoto K et al. Bioactive enteroglucagon (oxyntomodulin): present knowledge on its chemical structure and its biological activities. Peptides 2( Suppl. 2), 41–44 (1981).
  • Pocai A. Unraveling Oxyntomodulin, GLP-1’s enigmatic brother. J. Endocrinology 215(3), 335–346 (2012).
  • Wynne K, Bloom SR. The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nat. Clin. Pract. Endocrinol. Metab. 2(11), 612–620 (2006).
  • Jarrousse C, Bataille D, Jeanrenaud B. A pure enteroglucagon, oxyntomodulin (glucagon 37), stimulates insulin release in perfused rat pancreas. Endocrinology 115(1), 102–105 (1984).
  • Wynne K, Field BC, Bloom SR. The mechanism of action for oxyntomodulin in the regulation of obesity. Curr. Opin. Investig. Drugs 11(10), 1151–1157 (2010).
  • Wynne K, Park AJ, Small CJ et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. (Lond.) 30(12), 1729–1736 (2006).
  • Dakin CL, Small CJ, Batterham RL et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145(6), 2687–2695 (2004).
  • Dakin CL, Gunn I, Small CJ et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142(10), 4244–4250 (2001).
  • Kosinski JR, Hubert J, Carrington PE et al. The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obes. (Silver Spring) 20(8), 1566–1571(2012).
  • Pocai A, Carrington PE, Adams JR et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58(10), 2258–2266 (2009).
  • Druce MR , Bloom SR. Oxyntomodulin: a novel potential treatment for obesity. Treat. Endocrinol. 5(5), 265–272 (2006).
  • Lopez LC, Frazier ML, Su CJ, Kumar A, Saunders GF. Mammalian pancreatic preproglucagon contains three glucagon-related peptides. Proc. Natl Acad. Sci.USA 80(18), 5485–5489 (1983).
  • Blache P, Kervran A, Bataille D. Oxyntomodulin and glicentin: brain-gut peptides in the rat. Endocrinology 123(6), 2782–2787 (1988).
  • Tomita R, Igarashi S, Tanjoh K, Fujisaki S. Role of recombinant human glicentin in the normal human jejunum: an in vitro study. Hepatogastroenterology 52(65), 1459–1462 (2005).
  • Mustain WC, Rychahou PG, Evers BM. The role of neurotensin in physiologic and pathologic processes. Curr. Opin. Endocrinol. Diabetes Obes. 18(1), 75–82 (2011).
  • Jacobsen L, Madsen P, Jacobsen C, Nielsen MS, Gliemann J, Petersen CM. Activation and functional characterization of the mosaic receptor SorLA/LR11. J. Biol. Chem. 276(25), 22788–22796 (2001).
  • Christ-Crain M, Stoeckli R, Ernst A et al. Effect of gastric bypass and gastric banding on neurotensin levels in morbidly obese patients. J. Clin. Endocrinol. Metab. 91(9), 3544–3547 (2006).
  • Eissele R, Goke R, Willemer S et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. J. Clin. Invest. 22(4), 283–291 (1992).
  • de Bruine AP, Dinjens WN, Pijls MM et al. NCI-H716 cells as a model for endocrine differentiation in colorectal cancer. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 62(5), 311–320 (1992).
  • Drucker DJ, Jin T, Asa SL, Young TA, Brubaker PL. Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line. Mol. Endocrinol. 8(12), 1646–1655 (1994).
  • Rindi G, Grant SG, Yiangou Y et al. Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression. Am. J. Pathol. 136(6), 1349–1363 (1990).
  • Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM. glucose sensing in L cells: a primary cell study. Cell Metab. 8(6), 532–539 (2008).
  • Jacobsen SH, Olesen SC, Dirksen C et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes. Surg. 22(7), 1084–1096 (2012).
  • Gorboulev V, Schürmann A, Vallon V et al. Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61(1), 187–196 (2012).
  • Parker HE, Adriaenssens A, Rogers G et al. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia 55(9), 2445–2455 (2012).
  • Diakogiannaki E, Gribble FM, Reimann F. Nutrient detection by incretin hormone secreting cells. Physiol. Behav. 106(3), 387–393 (2012).
  • Yoder SM, Yang Q, Kindel TL, Tso P. Stimulation of incretin secretion by dietary lipid: is it dose dependent? Am. J. Physiol. Gastrointest. Liver Physiol. 297(2), G299–G305 (2009).
  • Murphy MC, Isherwood SG, Sethi S et al. Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase? Eur. J. Clin. Nutr. 49(8), 578–588 (1995).
  • Engelstoft MS, Egerod KL, Holst B, Schwartz TW. A gut feeling for obesity: 7TM sensors on enteroendocrine cells. Cell Metab. 8(6), 447–449 (2008).
  • Chu ZL, Carroll C, Alfonso J et al. A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinol. 149(5), 2038–2047 (2008).
  • Rodriguez de Fonseca F, Navarro M, Gomez R et al. An anorexic lipid mediator regulated by feeding. Nature 414(6860), 209–212 (2001).
  • Hansen KB, Rosenkilde MM, Knop FK et al. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP−1 release in humans. J. Clin. Endocrinol. Metab. 96(9), E1409–E1417 (2011).
  • Overton HA, Babbs AJ, Doel SM et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 3(3), 167–175 (2006).
  • Parker HE, Wallis K, le Roux CW, Wong KY, Reimann F, Gribble FM. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br. J. Pharmacol. 165(2), 414–423 (2012).
  • Hansen M, Sonne DP, Mikkelsen KH, Gluud LL, Vilsböll T, Knop FK. Effect of bile acid sequestrants on glycaemic control: protocol for a systematic review with meta-analysis of randomised controlled trials. BMJ Open 2(6) (2012).
  • Reimer RA. Meat hydrolysate and essential amino acid-induced glucagon-like peptide-1 secretion, in the human NCI-H716 enteroendocrine cell line, is regulated by extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinases. J. Endocrinol. 191(1), 159–170 (2006).
  • Cordier-Bussat M, Bernard C, Levenez F et al. Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene. Diabetes 47(7), 1038–1045 (1998).
  • Reimann F. Molecular mechanisms underlying nutrient detection by incretin-secreting cells. Int. Dairy J. 20(4), 236–242 (2010).
  • Reimann F, Williams L, Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 47(9), 1592–1601 (2004).
  • Greenfield JR, Farooqi IS, Keogh JM et al. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am. J. Clin. Nutr. 89(1), 106–113 (2009).
  • Zambrowicz B, Freiman J, Brown PM et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther. 92(2), 158–169 (2012).
  • Zambrowicz B, Ding ZM, Ogbaa I et al. Effects of LX4211, a dual SGLT1/SGLT2 inhibitor, plus sitagliptin on postprandial active GLP-1 and glycemic control in type 2 diabetes. Clin. Ther. 35(3), 273–285 (2013).
  • Powell DR, Smith M, Greer J et al. LX4211 Increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J. Pharmacol. Exp. Ther. 345(2), 250–259 (2013).
  • Shibazaki T, Tomae M, Ishikawa-Takemura Y et al. KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther. 342(2), 288–296 (2012).
  • Katz LB, Gambale JJ, Rothenberg PL et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of JNJ-38431055, a novel GPR119 receptor agonist and potential antidiabetes agent, in healthy male subjects. Clin. Pharmacol. Ther. 90(5), 685–692 (2011).
  • Flock G, Holland D, Seino Y, Drucker DJ. GPR119 regulates murine glucose homeostasis through incretin receptor-dependent and independent mechanisms. Endocrinology 152(2), 374–383 (2011).
  • Thomas C, Gioiello A, Noriega L et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10(3), 167–177 (2009).
  • Shang Q, Saumoy M, Holst JJ, Salen G, Xu G. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am. J. Physiol. Gastrointest. Liver Physiol. 298(3), G419–G424 (2010).
  • Adrian TE, Gariballa S, Parekh KA et al. Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia 55(9), 2343–2347 (2012).
  • Xiong Y, Swaminath G, Cao Q et al. Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol. Cell. Endocrinol. 369(1–2), 119–129 (2013).
  • Luo J, Swaminath G, Brown SP et al. A Potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS ONE 7(10), e46300 (2012).
  • Ahlkvist L, Vikman J, Pacini G, Ahren B. Synergism by individual macronutrients explains the marked early GLP-1 and islet hormone responses to mixed meal challenge in mice. Regul. Pep. 178(1–3), 29–35 (2012).
  • Migoya EM, Bergeron R, Miller JL et al. Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1. Clin. Pharmacol. Ther. 88(6), 801–808 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.