170
Views
1
CrossRef citations to date
0
Altmetric
Reviews

The endocrine response to severe burn trauma

, , , , &

References

  • Peck M. Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns 37(7), 1087–1100 (2010).
  • Jeschke M, Mlcak R, Finnerty C et al. Burn size determines the inflammatory and hypermetabolic response. Crit. Care 11(4), R90 (2007).
  • Jeschke M, Gauglitz G, Kulp G et al. Long-term persistence of the pathophysiological responses to severe burn injury. PLoS ONE 6(7), e21245 (2007).
  • Przkora R, Jeschke M, Barrow R et al. Metabolic and hormonal changes of severely burned children receiving long-term oxandrolone treatment. Ann. Surg. 242(3), 384–391 (2005).
  • Hart D, Wolfe S, Mlcak R et al. Persistence of muscle catabolism after severe burn. Surgery 128(2), 312–219 (2000).
  • Kraft R, Herndon D, Al-Mousawi A, Willians F, Finnerty C, Jeschke M. Burn size and survival probability in paediatric patients in modern burn care: a prospective observational cohort study. Lancet 379(9820), 1013–1021 (2012).
  • Dolecek R. Endocrine changes after burn trauma a review. Keio J. Med. 38(3), 262–276 (1989).
  • Senel E, Kizilgun M, Akbiyik F, Atayurt H, Tiryaki H, Aycan Z. The evaluation of the adrenal and thyroid axes and glucose metabolism after burn injury in children. J. Pediatr. Endocrinol. Metab. 23(5), 481–489 (2010).
  • Burton D, Nicholson G, Hall G. Endocrine and metabolic response to surgery. Contin. Educ. Anaesth. Crit. Care Pain 4(5), 144–147 (2004).
  • Dolecek R, Tymonova J, Adamkova M, Kadlcik M, Pohlidal A, Zavodna R. Endocrine changes after burns: the bone involvement. Acta. Chir. Plast. 45(3), 95–103 (2003).
  • Calvano S, Chiao J, Reaves L, Antonacci A, Shires G. Changes in free and total levels of plasma cortisol and thyroxine following thermal injury in man. J. Burn Care Res. 5(2), 143–149 (1984).
  • Tredget E, Yu Y. The metabolic effects of thermal injury. World J. Surg. 16(1), 68–79 (1992).
  • Rojas Y, Finnerty C, Radhakrishnan R, Herndon D. Burns: an update on current pharmacotherapy. Expert Opin. Pharmacother. 13(17), 2485–2494 (2012).
  • Pereira C, Jeschke M, Herndon D. Beta-blockade in burns. Novartis Found Symp. 280, 238–251 (2007).
  • The Global Burden of Disease: 2004 Update. WHO, Geneva, Switzerland (2008).
  • Mlcak R, Jeschke M, Barrow R, Herndon D. The influence of age and gender on resting energy expenditure in severely burned children. Ann. Surg. 224(1), 121–130 (2006).
  • Norbury W, Herndon D. Modulation of the hypermetabolic response after burn injury. In: Total Burn Care (3rd Edition). Saunders Elsevier, NY, USA 420–433 (2007).
  • Przkora R, Barrow R, Jeschke M et al. Body composition changes with time in pediatric burn patients. J. Trauma 60(5), 968–971 (2006).
  • Jeffries M, Vance M. Growth hormone and cortisol secretion in patients with burn injury. J. Burn Care Rehabil. 13(4), 391–395 (1992).
  • Klein G, Bi L, Sherrard D et al. Evidence supporting a role of glucocorticoids in short-term bone loss in burned children. Osteoporos. Int. 15(6), 468–474 (2004).
  • Goodall M, Stone C, Haynes B. Urinary output of adrenaline and noradrenaline in severe thermal burns. Ann. Surg. 145(4), 479–487 (1957).
  • Coombes E, Batstone G. Urine cortisol levels after burn injury. Burns Incl. Therm. Inj. 8(5), 333–337 (1982).
  • Wilmore D, Long J, Mason A et al. Catecholamines; mediator of the hypermetabolic response to thermal injury. Ann. Surg. 180(4) 653–669 (1974).
  • Pereira C, Murphy K, Herndon D. Altering metabolism. J. Burn Care Rehabil. 26(3), 194–199 (2005).
  • Rennie M. Muscle protein turnover and the wasting due to injury and disease. Br. Med. Bull. 41(3), 257–264 (1985).
  • Arnold J, Campbell I, Samuels T et al. Increased whole body protein breakdown predominates over increased whole body protein synthesis in multiple organ failure. Clin. Sci. 84(6), 655–661 (1993).
  • Biolo G, Tipton K, Klein S, Wolfe R. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am. J. Physiol. 273(1 Pt 1), E122–E129 (1997).
  • Biolo G, Toigo G, Ciocchi B et al. Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition 13(9) 52S–57S (1997).
  • Herndon D, Tompkins R. Support of the metabolic response to burn injury. Lancet 363(9424), 1895–1902 (2004).
  • Williams F, Jeschke M, Chinkes D et al. Modulation of the hypermetabolic response to trauma: temperature, nutrition, and drugs. J. Am. Coll. Surg. 208(4), 489–502 (2009).
  • Jeschke M, Chinkes D, Finnerty C et al. Pathophysiologic response to severe burn injury. Ann. Surg. 248(3), 387–401 (2008).
  • Pereira C, Murphy K, Jeschke M, Herndon D. Post burn muscle wasting and the effects of treatments. Int. J. Biochem. Cell. Biol. 37(10), 1948–1961 (2005).
  • Vanhorebeek I, Langouche L, Van den Berghe G. Endocrine aspects of acute and prolonged critical illness. Nat. Clin. Pract. Endocrinol. Metab. 2(1), 20–31 (2006).
  • Guvener M, Pasaoglu I, Demircin M, Oc M. Perioperative hyperglycemia is a strong correlate of postoperative infection in type II diabetic patients after coronary artery bypass grafting. Endocr. J. 49(5), 531–537 (2002).
  • Gore D, Chinkes D, Heggers J et al. Association of hyperglycemia with increased mortality after severe burn injury. J. Trauma 51(3), 540–544 (2001).
  • Thorell A, Efendic S, Gutniak M, Haggmark T, Ljungqvist O. Development of postoperative insulin resistance is associated with the magnitude of operation. Eur. J. Surg. 159(11–12), 593–599 (1993).
  • Garcia-Avello A, Lorente J, Cesar-Perez J et al. Degree of hypercoagulability and hyperfibrinolysis is related to organ failure and prognosis after burn trauma. Thromb. Res. 89(2), 59–64 (1998).
  • Christiansen C, Toft P, Jorgensen H, Andersen S, Tonnesen E. Hyperglycaemia and mortality in critically ill patients. A prospective study. Intensive Care Med. 30(8), 1685–1688 (2004).
  • World Health Organization. A graphical overview of the global burden of injuries. In: The Injury Chart Book. WHO, Geneva, Switzerland 29 (2002).
  • Pereira C, Barrow R, Sterns A et al. Age-dependent differences in survival after severe burns: a unicentric review of 1,674 patients and 179 autopsies over 15 years. J. Am. Coll. Surg. 202(3), 536–548 (2006).
  • Matsui M, Kudo T, Kudo M, Ishihara H, Matsuki A. The endocrine response after burns. Agressologie 32(4), 233–235 (1991).
  • Smith A, Barclay C, Quaba A et al. The bigger the burn, the greater the stress. Burns 23(4), 291–294 (1997).
  • Cioffi W, Vaughan G, Heironimus J, Jordan B, Mason A, Pruit B. Dissociation of blood-volume and flow in regulation of salt and water - balance in burn patients. Ann. Surg. 214(3), 213–220 (1991).
  • Carvajal H. Fluid resuscitation of paediatric burn victims - a critical appraisal. Pediatr. Nephr. 8(3), 357–366 (1994).
  • Stark H, Weinberger A, Benbassat M. Persistent hyponatremia and inappropriate anti-diurectic hormone-secretion in children with extensive burns. J. Pediatr. Surg. 14(2), 149–153 (1979).
  • Morgan R, Martyn J, Philibin D, Coggins C, Burke J. Water metabolism and antidiuretic hormone (ADH) response following thermal injury. J. Trauma 20(6), 468–472 (1980).
  • Shirani K, Vaughan G, Robertson G et al. Inappropriate vasopressin secretion (SIADH) in burned patients. J. Trauma 23(3), 217–224 (1983).
  • Hauben D, Le Roith D, Glick S, Mahler D. Nonoliguric vasopressin over-secretion in severely burned patients. Isr. J. Med. Sci. 16(2), 101–105 (1980).
  • Murton S, Tan S, Prickett T, Frampton C, Donald RA. Hormone responses to stress in patients with major burns. Brit. J. Plast. Surg. 51(5), 388–392 (1998).
  • Dolecek R, Adamkova M, Sotornikova T, Zavada M, Kracmar P. Endocrine response after burn. Scand. J. Plast. Reconstr. Surg. 13(1), 9–16 (1979).
  • Jadhav S, Sharma N, Meeks C et al. Effects of combined radiation and burn injury on the renin-angiotensin system. Wound Repair Regen. 21(1), 131–140 (2013).
  • Akrami C, Falkner B, Gould A, DeClement F, Bendlin A. Plasma-renin and occurrence of hypertension in children with burn injuries. J. Trauma 20(2), 130–134 (1980).
  • Liu D, Yang Z, Li A. Plasma renin activity (PRA), angiotensin II (AII), atrial natriuretic peptide (ANP) and AII/ANP ratio in severely burned patients. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 10(2), 117–120 (1994).
  • Popp M, Silberstein E, Srivastava L, Loggie J, Knowles H, MacMillan B. A patholophysiologic study of the hypertension associated with burn injury in children. Ann. Surg. 193(6), 817–824 (1981).
  • Onuoha G, Alpar E, Gowar J. Plasma levels of atrial natriuretic peptide in severe burn injury. Burns 26(5), 449–453 (2000).
  • Briziomolteni L, Molteni A, Warpeha R, Angelats J, Lewis N, Fors E. Prolactin, corticotropin, and gonadotropin, and gonadotropin concentrations following thermal-injury in adults. J. Trauma 24(1), 1–7 (1984).
  • Woolf P. Hormonal responses to trauma. Crit. Care Med. 20(2), 216–226 (1992).
  • Vaughan G, Becker R, Allen J, Goodwin C, Pruitt B, Mason A. Cortisol and corticotropin in burned patients. J. Trauma 22(4), 263–273 (1982).
  • Cohen J, Deans R, Dalley A et al. Measurement of tissue cortisol levels in patients with severe burns: a preliminary investigation. Critical Care 13(6), R189 (2009).
  • Pamieri T, Levine S, Schonfeld-Warden N et al. Hypothalamic-pituitary-adrenal axis response to sustained stress after major burn injury to children. J. Burn Care Res. 27(5), 742–748 (2006).
  • Fuchs P, Groger A, Bozkurt A, Johnen D, Wolter T, Pallua N. Cortisol in severely burned patients: Investigations on disturbance of the hypothalamic-pituitary-adrenal axis. Shock 28(6), 662–667 (2007).
  • Murphy J, Purdue G, Hunt J. Acute adrenal insufficiency in the patient with burns. J. Burn Care Rehabil. 14(2 Pt 1), 155–157 (1993).
  • Klein G. The interaction between burn injury and vitamin D metabolism and consequences for the patient. Curr. clin. pharmacol. 3(3), 204–210 (2008).
  • Jeschke M, Williams F, Finnerty C et al. The effect of ketoconazole on post-burn inflammation, hypermetabolism and clinical outcomes. PloS ONE 7(5), e35465 (2012)
  • Lephart E, Baxter C, Parker C. Effect of burn trauma on adrenal and testicular-steroid hormone production. J. Clin. Endocrinol. Metab. 64(4), 842–848 (1987).
  • Parker C, Baxter C. Divergence in adrenal-steroid secretory pattern after thermal-injury in adult patients. J. Trauma 25(6), 508–510 (1985).
  • Elijah I, Branski L, Finnerty C, Herndon D. The GH/IGF-1 system in critical illness. Best Pract. Res. Clin. Endocrinol. Metab. 25(5), 759–767 (2011).
  • Knox J, Demling R, Wilmore D, Sarraf P, Santos A. Increased survival after major thermal-injury - the effect of growth-hormone therapy in adults. J. Trauma 39(3), 526–532 (1995).
  • Herndon D, Hawkins H, Nguyen T et al. Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. Ann. Surg. 221(6), 649–656 (1995).
  • Takagi K, Suzuki F, Barrow R, Wolf S, Herndon D. Recombinant human growth hormone modulates Th1 and Th2 cytokine response in burned mice. Ann. Surg. 228(1), 106–111 (1998).
  • Takagi K, Suzuki F, Barrow R et al. Growth hormone improves immune function and survival in burned mice infected with herpes simplex virus type 1. J. Surg. Res. 69(1), 166–170 (1997).
  • Gore D, Honeycutt D, Jahoor F, Wolfe R, Herndon D. Effect of exogenous growth hormone on whole-body and isolated-limb protein kinetics in burned patients. Arch. Surg. 126(1), 38–43 (1991).
  • Breederveld R, Tuinebreijer W. Recombinant human growth hormone for treating burns and donor sites. Cochrane Database of Syst. Rev. 12(12), 50 (2012).
  • Luo X, Cen Y, Yu R, Zhao J. Effectiveness of recombinant human growth hormone treatment for severe burn injury. J. West China Univer. Med. Sci. 31(3), 399–401 (2000).
  • Gauglitz G, Williams F, Herndon D, Jeschke M. Burns: where are we standing with propranaolol, oxandrolone, rhGH, and the new incretin analogues? Curr. Opin. Clin. Nutr. Metab. Care 14(2), 176–181 (2011).
  • Takala J, Ruokonen E, Webster N et al. Increased mortality associated with growth hormone treatment in critically ill adults. N. Engl. J. Med. 341, 785–792 (1999).
  • Jeschke M, Finnety C, Kulp G, Przkora R, Mlack R, Herndon D. Combination of recombinant human growth hormone and propranolol decreases hypermetabolism and inflammation in severely burned children. Pediatr. Crit. Care Med. 9(2), 209–216 (2008).
  • Jeschke M, Herndon D, Barrow R. Insulin-like growth factor 1 in combination with insulin-like growth factor binding protein 3 affects the hepatic acute phase response and hepatic morphology in thermally injured rats. Ann. Surg. 231(3), 208–216 (2000).
  • Debroy M, Wolf S, Zhang X et al. Anabolic effects of insulin-like growth factor in combination with insulin-like growth factor binding protein-3 in severely burned adults. J. Trauma 47(5), 904–911 (1999).
  • Herndon D, Ramzy P, Debroy M et al. Muscle protein catabolism after severe burn, effects of IGF-1/IGFBP3 treatment. Ann. Surg. 229(5), 713–720 (1999).
  • Jeschke M, Barrow R, Suzuki F et al. IGF-I/IGFBP-3 equilibrates ratios of pro- to anti-inflammatory cytokines, which are predictors for organ function in severely burned pediatric patients. Mol. Med. 8(5), 238–246 (2002).
  • Becker R, Vaughan G, Ziegler M et al. Hypermetabolic low triiodothyronine syndrome of burn injury. Crit. Care Med. 10(12), 870–875 (1982).
  • Yang H, Yu X, Zhang Y. Free thyroxine in burn patient and its clinical significance. Chinese J. Plast. Surg. Burns 10(2), 121–123 (1994).
  • Gangemi E, Garino F, Berchialla P et al. Low triiodothyronine serum levels as a predictor of poor prognosis in burn patients. Burns 34(6), 817–824 (2008).
  • Schilling J, Zimmermann, TM Albrecht S, Zwipp H, Saeger H. Low T3 syndrome in patients with major trauma - Phenomenon or important pathogenic factor? Med. Klin. 94(3), 66–69 (1999).
  • Plymate S, Vaughan G, Mason A, Pruitt B. Central hypogonadism in burned men. Horm. Res. 27(3), 152–158 (1987).
  • Smeds S, Kagedal B, Leiden G, Lilijedahl S. Thyroid-function after thermal trauma. Scand. J. Plast. Reconstr. Surg. 15(2), 141–148 (1981).
  • Connolly C, Barrow R, Chinkes D, Martinez J, Herndon D. Recombinant human growth hormone increases thyroid hormone-binding sites in recovering severely burned children. Shock 19(5), 399–403 (2003).
  • Vaughan G, Mason A, McManus W et al. Alterations of mental status and thyroid-hormones after thermal injury. J. Clin. Endocrinol. Metab. 60(6), 1221–1225 (1985).
  • Kuhn J, Rieu M, Wasserman D et al. Thyroid-function in burned patients - influence of topical iodine therapy. Revue Med. Interne. 8(1), 21–26 (1987).
  • Preissler P. Changes in thyroid-hormone levels in severely burned patients treated topically with povidone-iodine. Langenbecks Archiv. Fur. Chir. 360(1), 9–15 (1983).
  • Kien C, Vanjonack W, Bode H. Low serum reverse T3 concentration in burned children: its relationship to nutritional state. Am. J. Clin. Nutr. 33(6), 1215–1219 (1980).
  • Becker R, Vaughan G, Goodwin C et al. Plasma norepinephrine, epinephrine, and thyroid-hormone interactions in severely burned patients. Arch. Surg. 115(4), 439–443 (1980).
  • Dolecek R, Dvoracek C, Jezek M, Kubis M, Sajnar J, Zavada M. Very low serum testosterone levels and severe impairment of spermatogenesis in burned male-patients - correlations with basal levels and levels of FSH, LH and PRL after LHRH + TRH. Endocrinol. Exp. 17(1), 33–45 (1983).
  • Da M, Ma K, Duan T. Clinical studies on the effects of burn trauma on pituitary-testis axis. Chinese J. Plast. Surg. Burns 15(5), 373–375 (1999).
  • Wang J, Zheng F, Shi X. The clinical significance of the change of blood testosterone in burned patients. Chinese J. Burns 16(2), 106–107 (2000).
  • Diem E, Schmid R, Schneider W, Spona J. Influence of burn trauma on the hypothalamus-pituitary axis in normal female subjects. Scand. J. Plast. Reconstr. Surg. 13(1), 17–20 (1979).
  • Dugan A, Malarkey W, Schwemberger S, Jauch E, Ogle C, Horseman N. Serum levels of prolactin, growth hormone, and cortisol in burn patients: correlations with severity of burn, serum cytokine levels, and fatality. J. Burn Care Rehabil. 25(3), 306–313 (2004).
  • Goyal N, Gore M, Shankar R. Galactorrhea and amenorrhea in burn patients. Burns 34(6), 825–828 (2008).
  • Semple C, Robertson W, Mitchell R et al. Mechanisms leading to hypogonadism in men with burns injuries. Br. Med. J. 295(6595), 403–407 (1987).
  • Jeschke M, Finnerty C, Suman O et al. The effect of Oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann. Surg. 246(3), 351–362 (2007).
  • Ferrando A, Sheffield-Moore M, Wolf S, Herndon D, Wolfe R. Testosterone administration in severe burns ameliorates muscle catabolism. Crit. Care Med. 29(10), 1936–1942 (2001).
  • Murphy K, Lee J, Herndon D. Current pharmocotherapy for the treatment of severe burns. Expert Opin. Pharmacother. 4(3), 369–384 (2003).
  • Tuvdendori D, Chinkes D, Zhang X et al. Long-term oxandrolone treatment increases muscle protein net deposition via improving amino acid utilization in pediatric patients 6 months after burn injury. Surgery 149(5), 645–653 (2011).
  • Demling R, DeSanti L. Oxandrolone, an anabolic steroid, significantly increases the rate of weight gain in the recovery phase after major burns. J. Trauma 43(1), 47–51 (1997).
  • Hart D, Wolfe S, Ramzy P et al. Anabolic effects of oxandrolone after severe burn. Ann. Surg. 233(4), 556–64 (2001).
  • Miller J, Btaiche I. Oxandrolone Treatment in adults with severe thermal injury. Pharmacotherapy 29(2), 213–226 (2009).
  • Klein G, Przkora R, Herndon D. Effects of burn injury on bone and mineral metabolism. In: Total Burn Care (3rd Edition). Saunders Elsevier, New York, NY, USA 420–433 (2007).
  • Klein G. Burns: where has all the calcium (and vitamin D) gone? Adv. Nutr. 2(6), 457–462 (2011).
  • Klein G, Nicolai M, Langman C, Cuneo B, Sailer D, Herndon D. Dysregulation of calcium homeostasis after severe burn injury in children: possible role of magnesium depletion. J. Pediatr. 131(2), 246–251 (1997).
  • Klein G, Langman C, Herndon D. Persistent hypoparathyroidism following magnesium repletion in burn-injured children. Pediatr. Nephrol. 14(4), 301–304 (2000).
  • Murphey E, Chattopadhyay N, Bai M et al. Up-regulation of the parathyroid calcium-sensing receptor after burn injury in sheep: a potential contributory factor to postburn hypocalcemia. Crit. Care Med. 28(12), 3885–3890 (2000).
  • Nielsen P, Rasmussen A, Butters R et al. Inhibition of PTH secretion by interleukin-1 beta in bovine parathyroid glands in vitro is associated with an up-regulation of the calcium sensing receptor mRNA. Biochem. Biophys. Res. Commun. 238(3), 880–885 (1997).
  • Toribio R, Kohn, W, Capen, C, Rosol T. Parathyroid hormone (PTH) secretion, PTH mRNA and calcium-sensing receptor mRNA expression in equine parathyroid cells, and effects of interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha on equine parathyroid cell function. J. Mol. Endocrinol. 31(3), 609–620 (2003).
  • Canaff L, Zhou X, Hendy G. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J. Biol. Chem. 283(20), 13586–15600 (2008).
  • Klein G, Xie Y, Qin Y et al. Preliminary evidence of early bone resorption in a sheep model of acute burn injury: an observational study. J. Bone Miner. Metab. (2013).
  • Klein G, Chen T, Holick M et al. Synthesis of vitamin D in skin after burns. Lancet 363(9405), 291–292 (2004).
  • Klein G, Herndon D, Rutan T et al. Bone disease in burn patients. J. Bone Miner. Res. 8(3), 337–345 (1993).
  • Klein G, Herndon D, Langman C et al. Long-term reduction in bone mass after severe burn injury in children. J. Pediatr. 126(2), 252–256 (1995).
  • Loghmani S, Maracy M, Kheirmand R. Serum phosphate level in burn patients. Burns 36(7), 1112–1115 (2010).
  • Yang H, Yim H, Cho Y et al. Change of serum phosphate level and clinical outcome of hypophosphatemia in massive burn patient. J. Trauma Acute Care Surg. 73(5), 1298–1302 (2012).
  • Berger M, Rothen C, Cavadini C, Chiolera R. Exudative mineral losses after serious burns: a clue to the alterations of magnesium and phosphate metabolism. Am. J. Clin. Nutr. 65(5), 1473–1481 (1997).
  • Edelman L, McNaught T, Chan G, Morris S. Sustained bone mineral density changes after burn injury. J. Surg. Res. 114(2), 172–178 (2003).
  • Klein G. Burn-induced bone loss: importance, mechanisms, and management. J. Burns Wounds 5(5), e5 (2006).
  • Klein G, Herndon D, Goodman W et al. Histomorphometric and biochemical characterization of bone following acute severe burns in children. Bone 17(5), 455–460 (1995).
  • Klein G, Langman C, Herndon D. Vitamin D depletion following burn injury in children: a possible factor in post-burn osteopenia. J. Trauma 52(2), 346–350 (2002).
  • Klein G, Herndon D. The role of bone densitometry in the diagnosis and management of the severely burned patient with bone loss. J. Clin. Densitom. 2(1), 11–15 (1999).
  • Klein G, Wimalawansa S, Kulkarni G, Sherrard D, Sanford A, Herndon D. The efficacy of acute administration of pamidronate on the conservation of bone mass following severe burn injury in children: a double-blind, randomized, controlled study. Osteoporos. Int. 16(6), 631–635 (2005).
  • Przokra R, Herndon D, Sherrard D, Chinkes, D, Klein, G. Pamidronate preserves bone mass for at least 2 years following acute administration for paediatric burn injury. Bone 41(2), 297–302 (2007).
  • Porro L, Herndon D, Rodriguez N et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J. Am. Coll. Surg. 214(4), 489–502 (2012).
  • Klein G, Herndon D, Chen T, Kulp G, Holick M. Standard multivitamin supplementation does not improve vitamin D insufficiency after burns. J. Bone Miner. Metab. 27(4), 502–506 (2009).
  • Raab W. Key position of catecholamines in functional and degenerative cardiovascular pathology. Am. J. Cardiol. 5(5), 571–578 (1960).
  • Norbury W, Herndon D, Branski L, Chinkes D, Jeschke M. Urinary cortisol and catecholamine excretion after burn injury in children. J. Clin. Endocrinol. Metab. 93(4), 1270–1275 (2008).
  • Loven L, Nordstrom H, Lennquist S. Changes in calcium and phosphate and their regulating hormones in patients with severe burn injuries. Scand. J. Plast. Reconstr. Surg. 18(1), 49–53 (1984).
  • Arbabi S, Ahrns K, Wahl W et al. Beta-blocker use is associated with improved outcomes in adult burn patients. J. Trauma 56(2), 265–269 (2004).
  • Herndon D, Rodriguez N, Diaz E et al. Long-term propranolol use in severely burned pediatric patients: a randomized placebo-controlled study. Ann. Surg. 256(3), 402–411 (2012).
  • Minifee P, Barrow R, Abston S et al. Improved myocardial oxygen utilization following propranolol infusion in adolescents with postburn hypermetabolism. J. Pediatr. Surg. 24(8), 806–810 (1989).
  • 138 Wolfe, R Herndon D, Peters E et al. Regulation of lioplysis in severely burned children. Ann. Surg. 206(2), 214–221 (1987).
  • Barrow R, Wolfe R, Dasu M et al. The use of beta-adrenergic blockade in preventing trauma-induced hepatomegaly. Ann. Surg. 243(1), 115–120 (2006).
  • Herndon D, Hart D, Wolfe S et al. Reversal of catabolism by beta-blockade after severe burns. N. Engl. J. Med. 345(17), 1223–1229 (2001).
  • 141 Brooks, N, Song J, Boehning, D et al. Propranolol improves impaired hepatic P12K/Akt signaling post burn injury. Mol. Med. 18(1), 707–711 (2012).
  • Olah G, Finnerty C, Sbrana E et al. Increased poly (ADP-ribosyl) ation in skeletal muscle tissue of pediatric patients with severe burn injury: prevention by propranolol treatment. Shock 36(1), 18–23 (2011).
  • Mohammadi A, Bakhshaeekia A, Alibeigi P et al. Efficacy of propranolol in wound healing for hospitalized burn patients. J. Burn Care Res. 30(6), 1013–1017. (2009).
  • Romana-Souza B, Nascimento A, Monte-Alto-Costa A. Low-dose propranolol improves cutaneous wound healing of burn-injured rats. Plast. Recontr. Surg. 122(6), 160–169 (2008).
  • Oberbeck R, Schmitz D, Wilsenack K et al. Adrenergic modulation of survival and cellular immune functions during polymicrobial sepsis. Neuroimmunomodulation 11(4), 214–223 (2004).
  • Wilson J, Higgings D, Hutting H et al. Early propranolol treatment induces lung heme-oxygenase-1, attenuates metabolic dysfunction, and improves survival following experimental sepsis. Crit. Care 17(5), R195 (2013)
  • Mowlavi A, Andrews K, Milner S, Herndon D, Heggers J. The effects of hyperglycemia on skin graft survival in the burn patient. Ann. Plast. Surg. 45(6), 629–632 (2000).
  • McMurry J. Wound healing with diabetes mellitus. better glucose control for better wound healing in diabetes. Surg. Clin. North Am. 64(4), 769–778 (1984).
  • McCowen K, Malhotra A, Bistrian B. Stress-induced hyperglycemia. Crit. Care Clin. 17(1), 107–124 (2001).
  • Van den Berghe G, Wilmer A, Hermans G et al. Intensive insulin therapy in the medical ICU. N. Engl. J. Med. 354(5), 449–461 (2006).
  • Van den Berghe G, Wouters P, Weekers F et al. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 345(19), 1359–1367 (2001).
  • Van den Berghe G, Wouters P, Bouillon R et al. Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control. Crit. Care Med. 31(2), 359–366 (2003).
  • Jeschke M, Kulp G, Kraft R et al. Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am. J. Resp. Crit. Care Med. 182(3), 351–9 (2010).
  • Sood R, Zieger M, Roggy D et al. The effectiveness of a computerized iv infusion protocol to treat hyperglycemia in burn patients. J. Burn Care Res. 33(5), 638–641 (2012).
  • Tuvdendorj D, Zhang X, Chinkes D et al. Intensive insulin treatment increases donor site wound protein synthesis in burn patients. Surgery 149(4), 512–518 (2011).
  • Thomas S, Morimoto K, Herndon D et al. The effect of prolonged euglycemic hyperinsulinemia on lean body mass after severe burn. Surgery 132(2), 341–347 (2002).
  • Gore D, Wolf S, Herndon D et al. Metformin blunts stress-induced hyperglycemia after thermal injury. J. Trauma 54(3), 555–561 (2003).
  • Cree M, Zwetsloot J, Herndon D et al. Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate. Ann. Surg. 245(2), 214–221 (2007).
  • Shen C, Fagan S, Fischman A et al. Effects of glucagon-like peptide 1 on glycemia control and its metabolic consequence after severe thermal injury-studies in an animal model. Surgery 149(5), 635–644 (2011).
  • Deane A, Chapman M, Fraser R, Burgstad C, Besanko L, Horowtiz M. The effect of exogenous glucagon-like peptide-1 on the glycaemic response to small intestinal nutrient in the critically ill: a randomised double-blind placebo-controlled cross over study. Crit. Care 13(3), R67 (2009).
  • Mecott G, Herndon D, Kulp G et al. The use of exenatide in severely burned pediatric patients. Crit. Care 14(4), R153 (2010).
  • Carter E, Bonab A, Goverman J et al. Evaluation of the antioxidant peptide SS31 for treatment of burn-induced insulin resistance. Int. J. Mol. Med. 28(4), 589–594 (2011).
  • Elijah I, Borsheim Em Maybauer D et al. Role of the PPAR-alpha agonist fenofibrate in severe pediatric burn. Burns 38(4), 481–486 (2012).
  • Gore D, Wolf S, Sanford A et al. Influence of metformin on glucose intolerance and musclecatabolism following severe burn injury. Ann. Surg. 241(2), 334–342 (2005).
  • Snell J, Loh N, Mahambrey T, Shokrollahi K. Clinical review: the critical care management of the burn patient. Crit. Care 17(5), 241 (2013).
  • Jeschke M. Clinical review: glucose control in severely burned patients- current best practice. Crit. Care 17(4), 232 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.