169
Views
2
CrossRef citations to date
0
Altmetric
Review

Endocrinology of bone/brain crosstalk

, , &

References

  • Jones KB, Mollano AV, Morcuende JA, et al. Bone and brain: a review of neural, hormonal and musculoskeletal connections. Iowa Orthopedic J 2008;24:123-32
  • He JY, Jiang LS, Dai LY. The roles of the sympathetic nervous system in osteoporotic diseases: a review of experimental and clinical studies. Ageing Res Rev 2011;10(2):253-63
  • Asmus SE, Pearsons S, Landis SC. Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J Neurosci 2000;20:1945-504
  • Burt-Pichat B, Lafage-Proust MH, Duboeuf F, et al. Dramatic decrease of innervation density in bone after ovariectomy. Endocrinology 2005;146:503-10
  • Martin CD, Jimenez-Andrade JM, Ghilardi JR, Mantyh PW. Organization of a unique net-like meshwork of CGRP+sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain. Neurosci 2007; lett 427:148-52
  • Togari A. Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cell. Microsc Res Tech 2002;58:77-84
  • Masi L. Crosstalk between the brain and bone. Clin Cases Miner Bone Metab 2012;9(1):13-16
  • Khor EC, Baldock P. The NPY system and its neural and neuroendocrine regulation of bone. Curr Osteoporos Rep 2012;10(2):160-8
  • Driessler F, Baldock PA. Hypothalamic regulation of bone. J Mol Endocrinol 2010;45(4):175-81
  • Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197-207
  • Patel MS, Elefteriou F. The new field of neuroskeletal biology. Calcif Tissue Int 2007;80:337-47
  • Elefteriou F. Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys 2008;473(2):231-6
  • Ahima RS, Flier JS. Leptin. Annu Rev Physiol 2000;62:413-37
  • Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002;111:305-17
  • De Marchi G, Ferraccioli G. Leptin: regulatory role in bone metabolism and in flogosis. Reumatismo 2002;54(3):217-25
  • Steppan CM, Crawford DT, Chidsey-Frink KL, et al. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 2000;92:73-8
  • Burguera B, Hofbauer LC, Thomas T, et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 2001;142:3546-53
  • Holloway WR, Collier FM, Aitken CJ, et al. Leptin inhibits osteoclast generation. J Bone Min Res 2002;17:200-9
  • Thomas T, Gori F, Khosla S, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999;140:1630
  • Ogueh O, Sooranna S, Nicolaides KH, Johnson MR. The relationship between leptin concentration and bone metabolism in the human fetus. J Clin Endocrinol Metab 2000;85:1997-9
  • Grinspoon S, Thomas E, Pitts S, et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med 2000;133:790-4
  • Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 1992;75:3-779-82
  • Howgate DJ, Graham SM, Leonidou A, et al. Bone metabolism in anorexia nervosa: molecular pathways and current treatment modalities. Osteoporos Int 2013;24(2):407-21
  • Yadav VK, Oury F, Suda N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite and energy expenditure. Cell 2009;138:976-89
  • Yamauchi M, Sugimoto T, Yamaguchi T, et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in post-menopausal women. Clin Endocrinol 2001;55:341-7
  • Thomas T, Burguera B, Melton LJ, et al. Role of serum leptin, insulin, and estrogen levels as a potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 2001;29:114-20
  • Balthasar N, Coppari R, McMinn J, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004;42(6):983-91
  • Yadav VK, Oury F, Suda N, et al. A serotonin dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009;138(5):976-89
  • Bliziotes MM, Eshleman AJ, Zhang XW, et al. Neurotransmitter action in osteoblasts: expression of a functional system for serotonin receptor activation and reuptake. Bone 2001;29:477-86
  • Battaglino R, Fu J, Spate U, et al. Serotonin regulates osteoclasts differentiation via its transporter. J Bone Miner Res 2004;19:1420-31
  • Gustafsson BI, Thommesen L, Stunes AK, et al. Serotonin and fluoxetine modulate bone cell function in vitro. J Cell Biochem 2006;98:139-51
  • Yadav VK, Ryu JH, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008;135:825-37
  • Westbroek I, van der Plas A, de Rooij KE, et al. Expression of serotonin receptors in bone. J Biol Chem 2001;276:28961-8
  • Zofkova I, Matucha P. New insights into the physiology of bone regulation: the role of neuro-hormones. Physiol Res 2014. [Epub ahead of print]
  • Yadav VK, Ducy P. Lrp5 and bone formation: a serotonin-dependent pathway. Ann N Y Acad Sci 2010;1192:103-9
  • Kode A, Mosialou I, Silva BC, et al. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J Clin Invest 2012;122:3490-503
  • Kawai M, Rosen CJ. Minireview: a skeleton in serotonin’s closet? Endocrinology 2010;151:4103-8
  • Diem SJ, Blackwell TL, Stone KL, et al. Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures. Arch Intern Med 2007;167:1240-5
  • Verdel BM, Souverein PC, Egberts TC, et al. Use of antidepressant drugs and risk of osteoporotic and non-osteoporotic fractures. Bone 2010;47:604-9
  • Courtier J, SY A, Johnson N, Findlay S. Bone mineral density in adolescent with eating disorders exposed to selective serotonin reuptake inhibitors. Eat Disord 2013;21:238-48
  • Chen F, Hahn TJ, Weintraub NT. Do SSRIs play a role in decreasing bone mineral density? J Am Med Dir Assoc 2012;13:413-17
  • Sansone RA, Sansone LA. SSRIs: bad to the bone? Innov Clin Neurosci 2012;9:42-7
  • Karsenty G, Yadav VK. Regulation of bone mass by serotonin: molecular biology and therapeutic implications. Annu rev Med 2011;62:323-31
  • Koyama H, Nakade O, Takada Y, et al. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoklast formation and activation. J Bone Miner Res 2002;17:1219-29
  • Takeda S. Central control of bone remodelling. J Neuroendocrinol 2008;20(6):802-7
  • Brighton PJ, Szekeres PG, Willars GB. Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev 2004;56:231-48
  • Sato S, Hanada R, Kimura A, et al. Central control of bone remodeling by neuromedin U. Nat Med 2007;10:1234-40
  • Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 2006;15(Special issue 2):R271-7
  • Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005;434:514-20
  • Cone RD. Studies on the physiological functions of the melanocortin system. Endocr Rev 2006;27:736-49
  • Ahn JD, Dubern B, Lubrano-Berthelier C, et al. Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology 2006;147:3196-202
  • Zengin A, Zhang L, Herzog H, et al. Neuropeptide Y and sex hormone interactions in humoral and neuronal regulation of bone and fat. Trends Endocrinol Metab 2010;21(7):411-18
  • Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012;50(2):430-6
  • Lee NJ, Herzog H. NPY regulation of bone remodelling. Neuropeptides 2009;43(6):457-63
  • Baldock PA, Allison SJ, Lundberg P, et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem 2007;282(26):19092-102
  • Kuo LE, Kitlinska JB, Tilan JU, et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 2007;13(7):803-11
  • Yang K, Guan H, Arany E, et al. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. FASEB J 2008;22(7):2452-64
  • Baldock PA, Sainsbury A, Couzens M, et al. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 2002;109(7):915-21
  • Lundberg P, Allison SJ, Lee NJ, et al. Greater bone formation of Y2 knockout mice is associated with increased osteoprogenitor numbers and altered Y1 receptor expression. J Biol Chem 2007;282(26):19082-91
  • Allison SJ, Baldock P, Sainsbury A, et al. Conditional deletion of hypothalamic Y2 receptors reverts gonadectomy-induced bone loss in adult mice. J Biol Chem 2006;281(33):23436-44
  • Sainsbury A, Baldock PA, Schwarzer C, et al. Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol Cell Biol 2003;23(15):5225-33
  • Henriksen DB, Alexandersen P, Bjarnason NH, et al. Role of Gastrointestinal Hormones in postprandial reduction of bone resorption. J Bone Miner Res 2003;18(12):2180-9
  • Van der Velde M, Delhanty P, Van der Eerden B, et al. Ghrelin and bone. Vitam Horm 2008;77:239-58
  • Misra M, Miller KK, Tsai P, et al. Elevated peptide YY levels in adolescent girls with anorexia nervosa. J Clin Endocrinol 2006;91(3):1027-33
  • Utz AL, Lawson EA, Misra M, et al. Peptide YY (PYY) levels and bone mineral density (BMD) in women with anorexia nervosa. Bone 2008;43(1):135-9
  • Wortley KE, Garcia K, Okamoto H, et al. Peptide YY regulates bone turnover in rodents. Gastroenterology 2007;133(5):1534-43
  • Idris AI, Ralston SH. Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol 2012;3:136
  • Tam J, Alexandrovich A, Di Marzo V, et al. CB1, but not CB2 cannabinoid receptor mediates stimulation of bone formation induced by traumatic brain injury. Abstracts of the 28th Annual Meeting of the American Society for Bone and Mineral Research [abstract no 1032]. JBMR 2006. 21(Suppl 1):S10
  • Karsak M, Cohen-Solal M, Freudenberg J, et al. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 2005;14(22):3389-96
  • Elefteriou F. Neuronal signaling and the regulation of bone remodeling. Cell Mol Life Sci 2005;62(19-20):2339-49
  • Skerry TM, Genever PG. Glutamate signalling in non-neronal tissues. Trends Pharmacol Sci 2001;22(4):174-81
  • Kalariti N, Koutsilieris M. Glutamatergic system in bone physiology. In Vivo 2004;18(5):621-8
  • Mason DJ, Suva LJ, Genever PG, et al. Mechanically regulated expression of a neural glutamate transporter in bone: a role for excitatory amino acids as osteotropic agents? Bone 1997;20(3):199-205
  • Bhangu S, Genever PG, Spencer GJ, et al. Evidence for targeted vesicular glutamate exocytosis in osteoblasts. Bone 2001;29(1):1623
  • Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone 1999;25(6):623-9
  • Chenu C. Glutamatergic innervation in bone. Microsc Res Tech 2002;58(2):70-6
  • Chenu C. Glutamatergic regulation of bone remodeling. J Muscoloskelet Neuronal Interact 2002;2(3):282-4
  • Gu Y, Publicover SJ. Expression of functional metabotropic glutamate receptors in primary cultured rat osteoblasts. Cross-talk with N-methyl-D-aspartate receptors. J Biol Chem 2000;275(44):34252-9
  • Peet NM, Grabowski PS, Laketic-Ljubojevic I, Skerry TM. The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation. FASEB J 1999;13(5):2179-85
  • Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature (London) 1998;391(6664):281-5
  • Breukel AI, Besselsen E, Lopes da Silva FH, Ghijsen WE. A presynaptic N-methyl-D-aspartate autoreceptor in rat hippocampus modulating amino acid release from a cytoplasmic pool. Eur J Neurosci 1998;10(1):106-14
  • Genever PG, Skerry TM. Regulation of spontaneous glutamate release activity in osteoblastic cells and its role in differentiation and survival: evidence for intrinsic glutamatergic signaling in bone. FASEB J 2001;15(9):1586-8
  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999;98(4):427-36
  • Gray C, Marie H, Arora M, et al. Glutamate does not play a major role in controlling bone growth. J Bone Miner Res 2001;16(4):742-9
  • Merle B, Itzstein C, Delmas D, Chenu C. NMDA glutamate receptors are expressed by osteoclast precursor and involved in the regulation of osteoclastogenesis. J Cell Biochem 2003;90(2):424-36
  • Itzstein C, Espinosa J, Delmas PD, Chenu C. Specific antagonists of NMDA receptors prevent osteoclast sealing zone formation required for bone resorption. Biochem Biophys Res Commun 2000;268(1):201-9
  • Lerner UH. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone. J Musculoskelet Neuronal Interact 2006;6(1):87-95
  • Lerner UH, Persson E. Osteotropic effects by the neuropeptides calcitonin gene-related peptide, substance P and vasoactive intestinal peptide. J Musculoskelet Neuronal Interact 2008;8(2):154-65
  • Kawase T, Burns DM. Calcitonin gene-related peptide stimulates potassium efflux through adenosine triphosphate-sensitive potassium channels and produces membrane hyperpolarization in osteoblastic UMR106 cells. Endocrinology 1998;139(8):3492-502
  • Vignery A, McCarthy TL. The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor I production by primary fetal rat osteoblasts. Bone 1996;18(4):331-5
  • Calland JW, Harris SE, Carnes DLJ. Human pulp cells respond to calcitonin gene-related peptide in vitro. J Endod 1997;23(8):485-9
  • Cornish J, Callon KE, Lin CQ, et al. Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts. Bone 1999;14(8):1302-9
  • Li J, Ahmad T, Spetea T, et al. Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 2001;16(8):1505-10
  • Drissi H, Hott M, Marie PJ, Lasmoles F. Expression of the CT/CGRP gene and its regulation by dibutyryl cyclic adenosine monophosphate in human osteoblastic cells. J Bone Miner Res 1997;12(11):1805-14
  • Ballica R, Valentijn K, Khachatryan A, et al. Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice. J Bone Miner Res 1999;14(7):1067-74
  • Valentijn K, Gutow AP, Troiano N, et al. Effects of calcitonin gene-related peptide on bone turnover in ovariectomized rats. Bone 1997;21(3):269-74
  • Schinke T, Liese S, Priemel M, et al. Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J Bone Miner Res 2004;19(12):2049-56
  • Imai S, Matsusue Y. Neuronal regulation of bone metabolism and anabolism: calcitonin gene-related peptide-, substance P-, and tyrosine hydroxylase-containing nerves and bone. Microsc Res Tech 2002;58(2):61-9
  • Goto T, Tanaka T. Tachykinins and tachykinin receptors in bone. Microsc Res Tech 2002;58(2):91-7
  • Liu D, Jiang LS, Dai LY. Substance P and its receptors in bone metabolism. Neuropeptides 2007;41(5):271-83
  • Shih C, Bernard GW. Neurogenic substance P stimulates osteogenesis in vitro. Peptides 1997;18(2):323-6
  • Goto T, Yamaza T, Kido MA, Tanaka T. Light-and electron-microscopic study of the distribution of axons containing substance P and the localization of the neurokinin-1 receptor in bone. Cell Tissue Res 1998;293(1):87-93
  • Matayoshi T, Goto T, Fukuhara E, et al. Neuropeptide substance P stimulates the formation of osteoclasts via synovial fibroblastic cells. Biochem Biophys Res Commun 2005;327(3):756-64
  • Konttinen YT, Imai S, Suda A. Neuropeptides and the puzzle of bone remodeling. State of the art. Acta Orthop Scand 1996;67(6):632-9
  • Said SI, Rosenberg RN. Vasoactive intestinal polypeptide: abundant immunoreactivity in neural cells and normal nervous tissue. Science 1976;192(4242):907-8
  • Groneberg DA, Rabe KF, Fischer A. Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol 2006;533(1-3):182-94
  • Henning RJ, Sawmiller DR. Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 2001;49(1):27-37
  • Cooke HJ. Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci 2000;915:77-80
  • Van Geldre LA, Lefebvre RA. Interaction of NO and VIP in gastrointestinal smooth muscle relaxation. Curr Pharm Des 2004;10(20):2483-97
  • Fahrenkrug J. Gut/brain peptides in the genital tract: VIP and PACAP. Scand J Clin Lab Invest Suppl 2001;234:35-9
  • Voice JK, Dorsam G, Chan RC, et al. Immunoeffector and immunoregulatory activities of vasoactive intestinal peptide. Regul Pept 2002;109(1-3):199-208
  • Delgado M, Pozo D, Ganea D. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 2004;56(2):249-90
  • Gozes I, Furman S. Clinical endocrinology and metabolism. Potential clinical applications of vasoactive intestinal peptide: a selected update. Best Pract Res Clin Endocrinol Metab 2004;18(4):623-40
  • Hohmann EL, Elde RP, Rysavy JA, et al. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 1986;232(4752):868-71
  • Lundberg P, Lundgren I, Mukohyama H, et al. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptor subtypes in mouse calvarial osteoblasts: presence of VIP-2 receptors and differentiation-induced expression of VIP-1 receptors. Endocrinology 2001;142(1):339-47
  • Ransjö M, Lie A, Mukohyama H, et al. Microisolated mouse osteoclasts express VIP-1 and PACAP receptors. Biochem Biophys Res Commun 2000;274(2):400-4
  • Lundberg P, Boström I, Mukohyama H, et al. Neuro-hormonal control of bone metabolism: vasoactive intestinal peptide stimulates alkaline phosphatase activity and mRNA expression in mouse calvarial osteoblasts as well as calcium accumulation mineralized bone nodules. Regul Pept 1999;85(1):47-58
  • Mukohyama H, Ransjö M, Taniguchi H, et al. The inhibitory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide on osteoclast formation are associated with upregulation of osteoprotegerin and downregulation of RANKL and RANK. Biochem Biophys Res Commun 2000;271(1):158-63
  • Delgado M, Abad C, Martinez C, et al. Vasoactive intestinal peptide prevents experimental arthritis by down-regulating both autoimmune and inflammatory components of the disease. Nat Med 2001;7(5):563-8
  • Kellenberger S, Muller K, Richener H, Bilbe G. Formeterol and isoproterenol induce c-fos gene expression in oateoblast-like cells by activating beta2-adrenergic receptors. Bone 1998;22(5):471-8
  • Owen TA, Bortell R, Yocum SA, et al. Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription. Proc Natl Acad Sci USA 1990;87(24):9990-4
  • Bonnet N, Pierroz DD, Ferrari SL. Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J Musculoskelet Neuronal Interact 2008;8(2):94-104
  • Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000;52(4):595-638
  • Chambers TJ. Regulation of the differentiation and function of osteoclasts. J Pathol 2000;192(1):4-13
  • Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999;20(3):345-57
  • Peng S, Wuu J, Mufson EJ, Fahnestock M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 2005;93:1412-21
  • Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93(2):165-76
  • Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005;434(7032):514-20
  • Takeuchi T, Tsuboi T, Arai M, Togari A. Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol 2001;61(5):579-86
  • Kondo A, Togari A. In vivo stimulation of sympathetic nervous system modulates osteoblastic activity in mouse calvaria. Am J Physiol Endocrinol Metab 2003;285(3):E661-7
  • Arai M, Nagasawa T, Koshihara Y, et al. Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta 2003;1640(2-3):137-42
  • Bonnet N, Brunet-Imbault B, Arlettaz A, et al. Alteration of trabecular bone under chronic beta2 agonists treatment. Med Sci Sports Exerc 2005;37(9):1493-501
  • Cavalié H, Lac G, Lebecque P, et al. Influence of clenbuterol on bone metabolism in exercised or sedentary rats. J Appl Physiol (1985) 2002;93(6):2034-7
  • Bonnet N, Benhamou CL, Brunet-Imbault B, et al. Severe bone alterations under beta2 agonist treatments: bone mass, microarchitecture and strength analyses in female rats. Bone 2005;37(5):622-33
  • Hamrick MW, Della-Fera MA, Choi YH, et al. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res 2005;20(6):994-1001
  • Hamrick MW, Pennington C, Newton D, et al. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 2004;34(3):376-83
  • Aguirre J, Buttery L, O’ Shaughnessy M, et al. Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am J Pathol 2001;158(1):247-57
  • Armour KE, Armour KJ, Gallagher ME, et al. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 2001;142(2):760-6
  • van’t Hof RJ, Ralston SH. Cytokine-induced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity. J BONE Miner Res 1997;12(11):1797-804
  • van’t Hof RJ, Armour KJ, Smith LM, et al. Requirement of the inducible nitric oxide synthase pathway for IL-1 induced osteoclastic bone resorption. Proc Natl Acad Sci USA 2000;97(14):7993-8
  • Löwik CW, Nibbering PH, van de Ruit M, Papapoulos SE. Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J Clin Invest 1994;93(4):1465-72
  • van’t Hof RJ, Macphee J, Libouban H, et al. Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 2004;145(11):5068-74
  • Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 2006;4:341-8
  • Takeuchi Y. Possible involvement of pituitary hormones in bone metabolism. Clin Calcium 2013;23(29):195-205
  • Imam A, Iqbal J, Blair HC, et al. Role of the pituitary-bone axis in skeletal pathophysiology. Curr Opin Endocrinol Diabetes Obes 2009;16(6):423-9
  • Ma R, Morshed S, Latif R, et al. The influence of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on osteoclastogenesis. Thyroid 2011;21(8):897-906
  • Sampath TK, Simic P, Sendak R, et al. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J Bone Miner Res 2007;22(6):849-59
  • Sendak RA, Sampath TK, McPherson JM. Newly reported roles of thyroid-stimulating hormone and follicle-stimulating hormone in bone remodelling. Int Orthop 2007;31(6):753-7
  • Zofkova I, Hill M. Biochemical markers of bone remodeling correlate negatively with circulating TSH in postmenopausal women. Endocr Regul 2008;42(4):121-7
  • Sugitani I, Fujimoto Y. Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: a prospective controlled study. Surgery 2011;150(6):1250-7
  • Isales CM, Zaidi M, Blair HC. ACTH is a novel regulator of bone mass. Ann N Y Acad Sci 2010;1192:110-16
  • Cannon JG, Cortez-Cooper M, Meaders E, et al. Follicle-stimulating hormone, interleukin-1, and bone density in adult women. Am J Physiol Regul Integr Comp Physiol 2010;298(3):R790-8
  • Colaianni G, Sun L, Di Benedetto A, et al. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton. J Biol Chem 2012;287(34):29159-67
  • Breuil V, Amri EZ, Panaia-Ferrari P, et al. Oxytocin and bone remodelling: relationships with neuropituitary hormones, bone status and body composition. Joint Bone Spine 2011;78(6):611-15
  • Lawson EA, Ackerman KE, Estella NM, et al. Nocturnal oxytocin secretion is lower in amenorrheic athletes than nonathletes and associated with bone microarchitecture and finite element analysis parameters. Eur J Endocrinol 2013;168(3):457-64
  • Lawson EA, Donoho DA, Blum JI, et al. Decreased nocturnal oxytocin levels in anorexia nervosa are associated with low bone mineral density and fat mass. J Clin Psychiatry 2011;72(11):1546-51
  • Lochner JE, Spangler E, Chavarha M, et al. Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity. Dev Neurobiol 2008;68(10):1243-56
  • Rossi A, et al. Psichiatria e neuroscienze. Trattato Italiano di Psichiatria-Terza Edizione, Masson S.p.A; Milano: 2006;5
  • Ji-Ye H, Xin-Feng Z, Lei-Sheng J. Autonomic control of bone formation: its clinical relevance. Handb Clin Neurol 2013;117:161-71
  • Kimble RB, Srivastava S, Ross FP, et al. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 1996;271(46):28890-7
  • Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 2002;288(3):321-33
  • Pierroz DD, Bouxsein ML, Rizzoli R, Ferrari SL. Combined treatment with a beta-blocker and intermittent PTH improves bone mass and microarchitecture in ovariectomized mice. Bone 2006;39(2):260-7
  • Bonnet N, Laroche N, Vico L, et al. Dose effects of propranolol on cancellous and cortical bone in ovariectomized adult rats. J Pharmacol Exp Ther 2006;318(3):1118-27
  • Zhang W, Kanehara M, Zhang Y, et al. Beta-blocker and other analogous treatments that affect bone mass and sympathetic nerve activity in ovariectomized rats. Am J Chin Med 2007;35(1):89-101
  • Pasco JA, Henry MJ, Sanders KM, et al. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 2004;19(1):19-24
  • Bonnet N, Gadois C, McCloskey E, et al. Protective effect of beta blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 2007;40(5):1209-16
  • Bouxsein ML, Devlin MJ, Glatt V, et al. Mice lacking beta-adrenergic receptors have increased bone mass but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology 2009;150(1):144-52
  • Marenzana M, De Souza RL, Chenu C. Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice. Bone 2007;41(2):206-15
  • Levasseur R, Dargent-Molina P, Sabatier JP, et al. Beta-blocker use, bone mineral density, and fracture risk in older women: results from the Epidemiologie de l’Osteoporose prospective study. J Am Geriatr Soc 2005;53(3):550-2
  • Reid IR, Gamble GD, Grey AB, et al. beta-Blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 2005;20(4):613-18
  • Rejnmark L, Vestergaard P, Kassem M, et al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int 2004;75(5):365-72
  • Sosa M, Saavedra P, Gómez de Tejada MJ, et al. Beta-blocker use is associated with fragility fractures in postmenopausal women with coronary heart disease. Aging Clin Exp Res 2011;23(2):112-17
  • Maïmoun L, Couret I, Micallef JP, et al. Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism 2002;51(8):958-63
  • Warden SJ, Bennell KL, Matthews B, et al. Quantitative ultrasound assessment of acute bone loss following spinal cord injury: a longitudinal pilot study. Osteoporos Int 2002;13(7):586-92
  • Kiratli BJ, Smith AE, Nauenberg T, et al. Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 2000;37(2):225-33
  • Uebelhart D, Demiaux-Domenech B, Roth M, Chantraine A. Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 1995;33(11):669-73
  • Frey-Rindova P, de Bruin ED, Stüssi E, et al. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 2000;38(1):26-32
  • Sabo D, Blaich S, Wenz W, et al. Osteoporosis in patients with paralysis after spinal cord injury. A cross-sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg 2001;121(1-2):75-8
  • Liu D, Zhao CQ, Li H, et al. Effects of spinal cord injury and hindlimb immobilization on sublesional and supralesional bones in young growing rats. Bone 2008;43(1):119-25
  • Munakata M, Kameyama J, Kanazawa M, et al. Circadian blood pressure rhythm in patients with higher and lower spinal cord injury: simultaneous evaluation of autonomic nervous activity and physical activity. J Hypertens 1997;15(12 Pt 2):1745-9
  • Schmid A, Huonker M, Stahl F, et al. Free plasma catecholamines in spinal cord injured persons with different injury levels at rest and during exercise. J Auton Nerv Syst 1998;68(1-2):96-100
  • Krassioukov AV, Bunge RP, Pucket WR, Bygrave MA. The changes in human spinal sympathetic preganglionic neurons after spinal cord injury. Spinal Cord 1999;37(1):6-13
  • Baek K, Bloomfield SA. Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J Bone Miner Res 2009;24(5):792-9
  • Kondo H, Nifuji A, Takeda S, et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem 2005;280(34):30192-200
  • Sugiyama T, Price JS, Lanyon LE. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 2010;46(2):314-21
  • Judex S, Gupta S, Rubin C. Regulation of mechanical signals in bone. Orthod Craniofac Res 2009;12(2):94-104
  • Childs M, Armstrong DG, Edelson GW. Is Charcot arthropathy a late sequela of osteoporosis in patients with diabetes mellitus? J Foot Ankle Surg 1998;37(5):437-9
  • Herbst SA, Jones KB, Saltzman CL. Pattern of diabetic neuropathic arthropathy associated with the peripheral bone mineral density. J Bone Joint Surg Br 2004;86(3):378-83
  • Jirkovská A, Kasalický P, Boucek P, et al. Calcaneal ultrasonometry in patients with Charcot osteoarthropathy and its relationship with densitometry in the lumbar spine and femoral neck and with markers of bone turnover. Diabet Med 2001;18(6):495-500
  • Altindag O, Altindag A, Asoglu M, et al. Relation of cortisol levels and bone mineral density among premenopausal women with major depression. Int J Clin Pract 2007;61(3):416-20
  • Jacka FN, Pasco JA, Henry MJ, et al. Depression and bone mineral density in a community sample of perimenopausal women: Geelong Osteoporosis Study. Menopause 2005;12(1):88-91
  • Kahl KG, Greggersen W, Rudolf S, et al. Bone mineral density, bone turnover, and osteoprotegerin in depressed women with and without borderline personality disorder. Psychosom Med 2006;68(5):669-74
  • Mussolino ME. Depression and hip fracture risk: the NHANES I epidemiologic follow-up study. Public Health Rep 2005;120(1):71-5
  • Petronijević M, Petronijević N, Ivković M, et al. Low bone mineral density and high bone metabolism turnover in premenopausal women with unipolar depression. Bone 2008;42(3):582-90
  • Kavuncu V, Kuloglu M, Kaya A, et al. Bone metabolism and bone mineral density in premenopausal women with mild depression. Yonsei Med J 2002;43(1):101-8
  • Whooley MA, Cauley JA, Zmuda JM, et al. Depressive symptoms and bone mineral density in older men. J Geriatr Psychiatry Neurol 2004;17(2):88-92
  • Yazici AE, Bagis S, Tot S, et al. Bone mineral density in premenopausal women with major depression. Joint Bone Spine 2005;72(6):540-3
  • Cizza G, Primma S, Coyle M, et al. Depression and osteoporosis: a research synthesis with meta-analysis. Horm Metab Res 2010;42(7):467-82
  • Wu Q, Magnus JH, Liu J, et al. Depression and low bone mineral density: a meta-analysis of epidemiologic studies. Osteoporos Int 2009;20(8):1309-20
  • Yirmiya R, Bab I. Major depression is a risk factor for low bone mineral density: a meta-analysis. Biol Psychiatry 2009;66(5):423-32
  • Bab IA, Yirmiya R. Depression and bone mass. Ann N Y Acad Sci 2010;1192:170-5
  • Carroll BJ, Cassidy F, Naftolowitz D, et al. Pathophysiology of hypercortisolism in depression. Acta Psychiatr Scand Suppl 2007(433):90-103
  • Manelli F, Giustina A. Glucocorticoid-induced osteoporosis. Trends Endocrinol Metab 2000;11(3):79-85
  • Alesci S, Martinez PE, Kelkar S, et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab 2005;90(5):2522-30
  • Bajayo A, Goshen I, Feldman S, et al. Central IL-1 receptor signaling regulates bone growth and mass. Proc Natl Acad Sci USA 2005;102(36):12956-61
  • Cizza G, Ravn P, Chrousos GP, Gold PW. Depression: a major, unrecognized risk factor for osteoporosis? Trends Endocrinol Metab 2001;12(5):198-203
  • Franchimont N, Wertz S, Malaise M. Interleukin-6: an osteotropic factor influencing bone formation? Bone 2005;37(5):601-6
  • Pace E, Siena L, Ferraro M, et al. Role of prostaglandin E2 in the invasiveness, growth and protection of cancer cells in malignant pleuritis. Eur J Cancer 2006;42(14):2382-9
  • Reynolds RM, Dennison EM, Walker BR, et al. Cortisol secretion and rate of bone loss in a population-based cohort of elderly men and women. Calcif Tissue Int 2005;77(3):134-8
  • Kinjo M, Setoguchi S, Schneeweiss S, Solomon DH. Bone mineral density in subjects using central nervous system-active medications. Am J Med 2005;118(12):1414
  • Misra M, Papakostas GI, Klibanski A. Effects of psychiatric disorders and psychotropic medications on prolactin and bone metabolism. J Clin Psychiatry 2004;65(12):1607-18
  • O’Keane V, Meaney AM. Antipsychotic drugs: a new risk factor for osteoporosis in young women with schizophrenia? J Clin Psychopharmacol 2005;25(1):26-31
  • Richards JB, Papaioannou A, Adachi JD, et al. Effect of selective serotonin reuptake inhibitors on the risk of fracture. Arch Intern Med 2007;167(2):188-94
  • Williams LJ, Henry MJ, Berk M, et al. Selective serotonin reuptake inhibitor use and bone mineral density in women with a history of depression. Int Clin Psychopharmacol 2008;23(2):84-7
  • Albrecht PJ, Hines S, Eisenberg E, et al. Pathologic alterations of cutaneous innervation and vasculature in affected limbs from patients with complex regional pain syndrome. Pain 2006;120(3):244-66
  • Kurihara N, Bertolini D, Suda T, et al. IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol 1990;144(11):4226-30
  • Sheline YI. Hippocampal atrophy in major depression: a result of depression-induced neurotoxicity? Mol Psychiatry 1996;1(4):298-9
  • Herrán A, Amado JA, García-Unzueta MT, et al. Increased bone remodeling in first-episode major depressive disorder. Psychosom Med 2000;62(6):779-82
  • Kahl KG, Rudolf S, Stoeckelhuber BM, et al. Bone mineral density, markers of bone turnover, and cytokines in young women with borderline personality disorder with and without comorbid major depressive disorder. Am J Psychiatry 2005;162(1):168-74
  • Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol 2003;24(8):444-8
  • Breuer B, Pappagallo M, Ongseng F, et al. An open-label pilot trial of ibandronate for complex regional pain syndrome. Clin J Pain 2008;24(8):685-9
  • Matheny ME, Miller RR, Shardell MD, et al. Inflammatory cytokine levels and depressive symptoms in older women in the year after hip fracture: findings from the Baltimore Hip Studies. J Am Geriatr Soc 2011;59(12):2249-55
  • Leyhe T, Stransky E, Eschweiler GW, et al. Increase of BDNF serum concentration during donepezil treatment of patients with early Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 2008;258(2):124-8
  • Adami S, Fossaluzza V, Gatti D, et al. Bisphosphonate therapy of reflex sympathetic dystrophy syndrome. Ann Rheum Dis 1997;56(3):201-4
  • Goldstein DS, Tack C, Li ST. Sympathetic innervation and function in reflex sympathetic dystrophy. Ann Neurol 2000;48(1):49-59
  • Kurvers HA. Reflex sympathetic dystrophy: facts and hypotheses. Vasc Med 1998;3(3):207-14
  • Laroche M, Redon-Dumolard A, Mazieres B, Bernard J. An X-ray absorptiometry study of reflex sympathetic dystrophy syndrome. Rev Rhum Engl Ed 1997;64(2):106-11
  • Drummond PD, Finch PM. Persistence of pain induced by startle and forehead cooling after sympathetic blockade in patients with complex regional pain syndrome. J Neurol Neurosurg Psychiatry 2004;75(1):98-102
  • Ali Z, Raja SN, Wesselmann U, et al. Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. Pain 2000;88(2):161-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.