523
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Dendritic cells, T-cells and epithelial cells: a crucial interplay in immunopathology of primary Sjögren's syndrome

, , &

References

  • Fox RI. Sjögren's syndrome. Lancet 2005;366:321-31
  • Liang Y, Yang Z, Qin B, Zhong R. Primary Sjögren's syndrome and malignancy risk: a systematic review and meta-analysis. Ann Rheum Dis 2013. [Epub ahead of print]
  • Satpathy AT, Wu X, Albring JC, Murphy KM. Re(de)fining the dendritic cell lineage. Nat Immunol 2012;13(12):1145-54
  • Merad M, Sathe P, Helft J, et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013;31:563-604
  • Dzionek A, Fuchs A, Schmidt P, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000;165(11):6037-46
  • Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010;116(16):e74-80
  • Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012;30:1-22
  • Reizis B, Bunin A, Ghosh HS, et al. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 2011;29:163-83
  • Wong KL, Tai JJ-Y, Wong W-C, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and non-classical human monocyte subsets. Blood 2011;118(5):e16-31
  • Döbel T, Kunze A, Babatz J, et al. FcγRIII (CD16) equips immature 6-sulfo LacNAc-expressing dendritic cells (slanDCs) with a unique capacity to handle IgG-complexed antigens. Blood 2013;121(18):3609-18
  • Schäkel K, Kannagi R, Kniep B, et al. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity 2002;17(3):289-301
  • Schäkel K, Kietzell von M, Hänsel A, et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity 2006;24(6):767-77
  • Günther C, Starke J, Zimmermann N, Schäkel K. Human 6-sulfo LacNAc (slan) dendritic cells are a major population of dermal dendritic cells in steady state and inflammation. Clin Exp Dermatol 2012;37(2):169-76
  • Hänsel A, Günther C, Baran W, et al. Human 6-sulfo LacNAc (slan) dendritic cells have molecular and functional features of an important pro-inflammatory cell type in lupus erythematosus. J Autoimmun 2013;40:1-8
  • Gonzalez SF, Degn SE, Pitcher LA, et al. Trafficking of B-cell antigen in lymph nodes. Annu Rev Immunol 2011;29:215-33
  • Heesters BA, Chatterjee P, Kim Y-A, et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B-cell antigen binding and activation. Immunity 2013;38(6):1164-75
  • Vinuesa CG, Linterman MA, Goodnow CC, Randall KL. T-cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol Rev 2010;237(1):72-89
  • Manzo A, Pitzalis C. Lymphoid tissue reactions in rheumatoid arthritis. Autoimmun Rev 2007;7(1):30-4
  • Risselada AP, Looije MF, Kruize AA, et al. The role of ectopic germinal centers in the immunopathology of primary Sjögren's syndrome: a systematic review. Semin Arthritis Rheum 2013;42(4):368-76
  • Theander E, Vasaitis L, Baecklund E, et al. Lymphoid organistaion in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjögren's syndrome. Ann Rheum Dis 2011;70(8):1363-8
  • Valladeau J, Duvert-Frances V, Pin JJ, et al. The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur J Immunol 1999;29(9):2695-704
  • Hunger RE, Sieling PA, Ochoa MT, et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T-cells. J Clin Invest 2004;113(5):701-8
  • Ozaki Y, Ito T, Son Y, et al. Decrease of blood dendritic cells and increase of tissue-infiltrating dendritic cells are involved in the induction of Sjögren's syndrome but not in the maintenance. Clin Exp Immunol 2010;159(3):315-26
  • Ozaki Y, Amakawa R, Ito T, et al. Alteration of peripheral blood dendritic cells in patients with primary Sjögren's syndrome. Arthritis Rheum 2001;44(2):419-31
  • Vogelsang P, Brun JG, Oijordsbakken G, et al. Levels of plasmacytoid dendritic cells and type-2 myeloid dendritic cells are reduced in peripheral blood of patients with primary Sjögren's syndrome. Ann Rheum Dis 2010;69(6):1235-8
  • Wildenberg ME, van Helden-Meeuwsen CG, van de Merwe JP, et al. Systemic increase in type I interferon activity in Sjögren's syndrome: a putative role for plasmacytoid dendritic cells. Eur J Immunol 2008;38(7):2024-33
  • van Blokland SC, van Helden-Meeuwsen CG, Wierenga-Wolf AF, et al. Two different types of sialoadenitis in the NOD- and MRL/lpr mouse models for Sjögren's syndrome: a differential role for dendritic cells in the initiation of sialoadenitis? Lab Invest 2000;80(4):575-85
  • Le A, Saverin M, Hand AR. Distribution of dendritic cells in normal human salivary glands. Acta Histochem Cytochem 2011;44(4):165-73
  • Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjögren's syndrome. J Autoimmun 2010;34(4):400-7
  • Manoussakis MN, Boiu S, Korkolopoulou P, et al. Rates of infiltration by macrophages and dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic inflammatory lesions of Sjögren's syndrome: correlation with certain features of immune hyperactivity and factors associated with high risk of lymphoma development. Arthritis Rheum 2007;56(12):3977-88
  • Van Vré EA, Bosmans JM, Van Brussel I, et al. Immunohistochemical characterisation of dendritic cells in human atherosclerotic lesions: possible pitfalls. Pathology 2011;43(3):239-47
  • Bikker A, Kruize AA, Wenting M, et al. Increased interleukin (IL)-7R expression in salivary glands of patients with primary Sjögren's syndrome is restricted to T-cells and correlates with IL-7 expression, lymphocyte numbers and activity. Ann Rheum Dis 2012;71(6):1027-33
  • Gottenberg J-E, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome. Proc Natl Acad Sci USA 2006;103(8):2770-5
  • Båve U, Nordmark G, Lövgren T, et al. Activation of the type I interferon system in primary Sjögren's syndrome: a possible etiopathogenic mechanism. Arthritis Rheum 2005;52(4):1185-95
  • Hjelmervik TOR, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren's syndrome patients from healthy control subjects. Arthritis Rheum 2005;52(5):1534-44
  • Brkic Z, Maria NI, van Helden-Meeuwsen CG, et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren's syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis 2013;72(5):728-35
  • Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B-cell differentiation with Sjögren's syndrome. J Clin Invest 2002;109(1):59-68
  • Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren's syndrome. Ann Rheum Dis 2003;62(2):168-71
  • Lavie F, Miceli-Richard C, Quillard J, et al. BLyS) in T-cells infiltrating labial salivary glands from patients with Sjögren's syndrome. J Pathol 2004;202(4):496-502
  • Yao Y, Liu Z, Jallal B, et al. Type I interferons in Sjögren's syndrome. Autoimmun Rev 2013;12(5):558-66
  • Spits H, Couwenberg F, Bakker AQ, et al. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J Exp Med 2000;192(12):1775-84
  • Versnel MA. Id3 knockout mice as a new model for sjogren's syndrome: only a T-cell defect or more? Immunity 2004;21(4):457-8
  • Guo Z, Li H, Han M, et al. Modeling Sjögren's syndrome with Id3 conditional knockout mice. Immunol Lett 2011;135(1-2):34-42
  • Li H, Dai M, Zhuang Y. A T-cell intrinsic role of Id3 in a mouse model for primary Sjögren's syndrome. Immunity 2004;21(4):551-60
  • Deshmukh US, Nandula SR, Thimmalapura P-R, et al. Activation of innate immune responses through Toll-like receptor 3 causes a rapid loss of salivary gland function. J Oral Pathol Med 2009;38(1):42-7
  • Wildenberg ME, Welzen-Coppens JMC, van Helden-Meeuwsen CG, et al. Increased frequency of CD16+ monocytes and the presence of activated dendritic cells in salivary glands in primary Sjögren syndrome. Ann Rheum Dis 2009;68(3):420-6
  • Higaki M, Higaki Y, Kawashima M. Increased expression of CD208 (DC-LAMP) in epidermal keratinocytes of psoriatic lesions. J Dermatol 2009;36(3):144-9
  • Geijtenbeek TB, Torensma R, van Vliet SJ, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000;100(5):575-85
  • Engering A, Geijtenbeek TBH, van Vliet SJ, et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T-cells. J Immunol 2002;168(5):2118-26
  • Svajger U, Anderluh M, Jeras M, Obermajer N. C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010;22(10):1397-405
  • Bell D, Chomarat P, Broyles D, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 1999;190(10):1417-26
  • Moret FM, Hack CE, van der Wurff-Jakobs KM, et al. Intra-articular CD1c-expressing myeloid dendritic cells from rheumatoid arthritis patients express a unique set of T-cell-attracting chemokines and spontaneously induce Th1, Th17 and Th2 cell activity. Arthritis Res Ther 2013;15(5):R155
  • Fujikado N, Saijo S, Yonezawa T, et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 2008;14(2):176-80
  • Jagtap P, McGowan T, Bandhakavi S, et al. Deep metaproteomic analysis of human salivary supernatant. Proteomics 2012;12(7):992-1001
  • Sozzani S. Dendritic cell trafficking: more than just chemokines. Cytokine Growth Factor Rev 2005;16(6):581-92
  • Xanthou G, Polihronis M, Tzioufas AG, et al. “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjögren's syndrome patients: possible participation in lymphoid structure formation. Arthritis Rheum 2001;44(2):408-18
  • Moriyama M, Hayashida J-N, Toyoshima T, et al. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjögren's syndrome. Clin Exp Immunol 2012;169(1):17-26
  • Dimitriou ID, Kapsogeorgou EK, Moutsopoulos HM, Manoussakis MN. CD40 on salivary gland epithelial cells: high constitutive expression by cultured cells from Sjögren's syndrome patients indicating their intrinsic activation. Clin Exp Immunol 2002;127(2):386-92
  • Ping L, Ogawa N, Sugai S. Novel role of CD40 in Fas-dependent apoptosis of cultured salivary epithelial cells from patients with Sjögren's syndrome. Arthritis Rheum 2005;52(2):573-81
  • van Woerkom JM, Kruize AA, Wenting-van Wijk MJG, et al. Salivary gland and peripheral blood T helper 1 and 2 cell activity in Sjögren's syndrome compared with non-Sjögren's sicca syndrome. Ann Rheum Dis 2005;64(10):1474-9
  • Abu-Helu RF, Dimitriou ID, Kapsogeorgou EK, et al. Induction of salivary gland epithelial cell injury in Sjögren's syndrome: in vitro assessment of T cell-derived cytokines and Fas protein expression. J Autoimmun 2001;17(2):141-53
  • Jin J-O, Shinohara Y, Yu Q. Innate immune signaling induces Interleukin-7 production from salivary gland cells and accelerates the development of primary Sjögren's syndrome in a mouse model. PLoS ONE 2013;8(10):e77605
  • Tsunawaki S, Nakamura S, Ohyama Y, et al. Possible function of salivary gland epithelial cells as nonprofessional antigen-presenting cells in the development of Sjögren's syndrome. J Rheumatol 2002;29(9):1884-96
  • Kawakami A, Nakashima K, Tamai M, et al. Toll-like receptor in salivary glands from patients with Sjögren's syndrome: functional analysis by human salivary gland cell line. J Rheumatol 2007;34(5):1019-26
  • Ittah M, Miceli-Richard C, Eric Gottenberg J, et al. B-cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren's syndrome. Arthritis Res Ther 2006;8(2):R51
  • Ittah M, Miceli-Richard C, Lebon P, et al. Induction of B-cell-activating factor by viral infection is a general phenomenon, but the types of viruses and mechanisms depend on cell type. J Innate Immun 2011;3(2):200-7
  • Miro F, Nobile C, Blanchard N, et al. T-cell-dependent activation of dendritic cells requires IL-12 and IFN-gamma signaling in T-cells. J Immunol 2006;177(6):3625-34
  • van Roon JA, Kruize AA, Radstake TRDJ. Editorial: interleukin-7 and its receptor: the axis of evil to target in Sjögren's syndrome? Arthritis Rheum 2013;65(8):1980-4
  • Bikker A, van Woerkom JM, Kruize AA, et al. Increased expression of interleukin-7 in labial salivary glands of patients with primary Sjögren's syndrome correlates with increased inflammation. Arthritis Rheum 2010;62(4):969-77
  • Carreno BM, Becker-Hapak M, Linette GP. CD40 regulates human dendritic cell-derived IL-7 production that, in turn, contributes to CD8(+) T-cell antigen-specific expansion. Immunol Cell Biol 2009;87(2):167-77
  • van Roon JA, Verweij MC, Wijk MW, et al. Increased intraarticular interleukin-7 in rheumatoid arthritis patients stimulates cell contact-dependent activation of CD4(+) T cell and macrophages. Arthritis Rheum 2005;52(6):1700-10
  • Jin J-O, Kawai T, Cha S, Yu Q. Interleukin-7 enhances the Th1 response to promote the development of Sjögren's syndrome-like autoimmune exocrinopathy in mice. Arthritis Rheum 2013;65(8):2132-42
  • Bikker A, Moret FM, Kruize AA, et al. IL-7 drives Th1 and Th17 cytokine production in patients with primary SS despite an increase in CD4 T-cells lacking the IL-7Rα. Rheumatology (Oxford) 2012;51(6):996-1005
  • Meijer JM, Meiners PM, Vissink A, et al. Effectiveness of rituximab treatment in primary Sjögren's syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2010;62(4):960-8
  • van Woerkom JM, Kruize AA, Geenen R, et al. Safety and efficacy of leflunomide in primary Sjögren's syndrome: a phase II pilot study. Ann Rheum Dis 2007;66(8):1026-32
  • Bikker A, van Woerkom JM, Kruize AA, et al. Clinical efficacy of leflunomide in primary Sjögren's syndrome is associated with regulation of T-cell activity and upregulation of IL-7 receptor alpha expression. Ann Rheum Dis 2012;71(12):1934-41
  • Cankaya H, Alpoz E, Karabulut G, et al. Effects of hydroxychloroquine on salivary flow rates and oral complaints of Sjögren patients: a prospective sample study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110(1):62-7
  • Kruize AA, Hene RJ, Kallenberg CG, et al. Hydroxychloroquine treatment for primary Sjögren's syndrome: a two year double blind crossover trial. Ann Rheum Dis 1993;52(5):360-4
  • Sun S, Rao NL, Venable J, et al. TLR7/9 antagonists as therapeutics for immunemediated inflammatory disorders. Inflamm Allergy Drug Targets 2007;6(4):223-35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.