204
Views
23
CrossRef citations to date
0
Altmetric
Reviews

The value of animal models to study immunopathology of primary human Sjögren's syndrome symptoms

, &

References

  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216
  • Medzhitov R, Janeway CA Jr. Innate immune recognition and control of adaptive immune responses. Semin Immunol 1998;10(5):351-3
  • Helmick CG, Felson DT, Lawrence RC, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 2008;58(1):15-25
  • Nguyen CQ, Cha SR, Peck AB. Sjögren's syndrome (SjS)-like disease of mice: the importance of B lymphocytes and autoantibodies. Front Biosci 2007;12:1767-89
  • Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheu 2008;58(1):26-35
  • Mavragani CP, Moutsopoulos HM. Sjogren's Syndrome. Annu Rev Pathol 2013. [Epub ahead of print]
  • Talal N. Overview of Sjögren's syndrome. J Dent Res 1987;66:672-4
  • Whitacre CC. Sex differences in autoimmune disease. Nat Immunol 2001;2(9):777-80
  • Sullivan DA. Sex hormones and Sjogren's syndrome. J Rheumatol Suppl 1997;50:17-32
  • Mellgren SI, Conn DL, Stevens JC, Dyck PJ. Peripheral neuropathy in primary Sjogren's syndrome. Neurology 1989;39(3):390-4
  • Meijer JM, Meiners PM, Huddleston Slater JJ, et al. Health-related quality of life, employment and disability in patients with Sjogren's syndrome. Rheumatology (Oxford) 2009;48(9):1077-82
  • Mengshoel AM, Norheim KB, Omdal R. Primary Sjogren's syndrome - Fatigue is an ever-present, fluctuating and uncontrollable lack of energy. Arthritis Care Res 2013. [Epub ahead of print]
  • Malladi AS, Sack KE, Shiboski SC, et al. Primary Sjogren's syndrome as a systemic disease: a study of participants enrolled in an international Sjogren's syndrome registry. Arthritis Care Res 2012;64(6):911-18
  • Vrethem M, Lindvall B, Holmgren H, et al. Neuropathy and myopathy in primary Sjogren's syndrome: neurophysiological, immunological and muscle biopsy results. Acta neurolScand 1990;82(2):126-31
  • Malinow KL, Molina R, Gordon B, et al. Neuropsychiatric dysfunction in primary Sjogren's syndrome. Ann Intern Med 1985;103(3):344-50
  • Gokcay F, Oder G, Celebisoy N, et al. Headache in primary Sjogren's syndrome: a prevalence study. Acta Neurol Scand 2008;118(3):189-92
  • Tjensvoll AB, Harboe E, Goransson LG, et al. Headache in primary Sjogren's syndrome: a population-based retrospective cohort study. Eur J Neurol 2013;20(3):558-63
  • Lavoie TN, Lee BH, Nguyen CQ. Current concepts: mouse models of Sjogren's syndrome. J Biomed Biotechnol 2011;2011:549107
  • Lee BH, Gauna AE, Pauley KM, et al. Animal models in autoimmune diseases: lessons learned from mouse models for Sjogren syndrome. Clin Rev Allerg Immunol 2012;42:35-44
  • Delaleu N, Nguyen CQ, Peck AB, Jonsson R. Sjögren's syndrome: studying the disease in mice. Arthritis Res Ther 2011;13:217
  • Robinson CP, Yamachika S, Bounous DI, et al. A novel NOD-derived murine model of primary Sjögren's syndrome. Arthritis Rheum 1998;41:150-6
  • Delaleu N. Biomarker profiles in serum and saliva of experimental sjogren syndrome: associations with specific autoimmune manifestations. Arthritis Res Ther 2008;10:R22
  • Cha S, Nagashima H, Brown VB, et al. Two NOD IDD-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (sjogren syndrome) on a healthy murine background. Arthritis Rheum 2007;46(5):1390-8
  • Hu Y, Nakagawa Y, Purushotam KR, Humphreys-Beher MG. Functional changes in salivary glands of autoimmune disease-prone NOD mice. Am J Physiol 1992;263:E607-14
  • Robinson CP, Cornelius J, Bounous DE, et al. Characterization of the changing lymphocyte populations and cytokine expression in the exocrine tissues of autoimmune NOD mice. Autoimmunity 1998;27:29-44
  • van Blokland SC, van Helden-Meeuwsen CG, Wierenga-Wolf AF, et al. Two different types of sialoadenitis in the NOD- and MRL/lpr mouse models for Sjogren's syndrome: a differential role for dendritic cells in the initiation of sialoadenitis? Lab Invest 2000;80:575-85
  • Yanagi K, Haneji N, Ishimaru N, et al. Analysis of T cell receptor Vbeta usage in the autoimmune sialadenitis of non-obese diabetic (NOD) mice. Clin Exp Immunol 1997;110:440-6
  • Roescher N, Vosters JL, Yin H. Effect of soluble ICAM-1 on a sjogren syndrome-like phenotype in NOD mice is disease stage dependent. PLoS One 2011;6:e19962
  • Cha S, Brayer J, Gao J, et al. A dual role for interferon-gamma in the pathogenesis of Sjogren's syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand J Immunol 2004;60(6):552-65
  • Robinson CP BJ, Yamachika S, Esch TR, et al. Transfer of human serum IgG to nonobese diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjögren's syndrome. Proc Natl Acad Sci USA 1998;95(13):7538-843
  • Gao J, Cha S, Jonsson R, et al. Detection of anti-type 3 muscarinic acetylcholine receptor autoantibodies in the sera of Sjogren's syndrome patients by use of a transfected cell line assay. Arthritis Rheum 2004;50(8):2615-21
  • Cha S, Singson E, Cornelius J, et al. Muscarinic acetylcholine type-3 receptor desensitization due to chronic exposure to Sjogren's syndrome-associated autoantibodies. J Rheumatol 2006;33(2):296-306
  • Brayer JB, Cha S, Nagashima H, et al. IL-4-dependent effector phase in autoimmune exocrinopathy as defined by the NOD.IL-4-gene knockout mouse model of Sjogren's syndrome. Scand J Immunol 2001;54(1-2):133-40
  • Gao J, Killedar S, Cornelius JG. Sjogren's syndrome in the NOD mouse model is an interleukin-4 time-dependent, antibody isotype-specific autoimmune disease. J Autoimmun 2006;26(2):90-103
  • Bowman S, Barone F. Biologic treatments in Sjogren's syndrome. Presse Med 2012;41(9 Pt 2):e495-509
  • Devauchelle-Pensec V, Pennec Y, Morvan J, et al. Improvement of Sjogren's syndrome after two infusions of rituximab (anti-CD20). Arthritis Rheum 2007;57(2):310-17
  • Pers JO, Devauchelle V, Daridon C, et al. BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjogren's syndrome. Arthritis Rheum 2007;56(5):1464-77
  • Pijpe J, Meijer JM, Bootsma H, et al. Clinical and histologic evidence of salivary gland restoration supports the efficacy of rituximab treatment in Sjogren's syndrome. Arthritis Rheum 2009;60(11):3251-6
  • Meijer JM, Pijpe J, Vissink A, et al. Treatment of primary Sjogren syndrome with rituximab: extended follow-up, safety and efficacy of retreatment. Ann Rheum Dis 2009;68(2):284-5
  • Seror R, Sordet C, Guillevin L, et al. Tolerance and efficacy of rituximab and changes in serum B cell biomarkers in patients with systemic complications of primary Sjogren's syndrome. Ann Rheum Dis 2007;66(3):351-7
  • Gottenberg JE, Guillevin L, Lambotte O, et al. Tolerance and short term efficacy of rituximab in 43 patients with systemic autoimmune diseases. Ann Rheum Dis 2005;64(6):913-20
  • Brayer J, Lowry J, Cha S, et al. Alleles from chromosomes 1 and 3 of NOD mice combine to influence Sjogren's syndrome-like autoimmune exocrinopathy. J Rheumatol 2000;27(8):1896-904
  • Cha S, Nagashima H, Brown VB, et al. Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjogren's syndrome) on a healthy murine background. Arthritis Rheum 2002;46(5):1390-8
  • Nguyen CQ, Hu MH, Li Y, et al. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjogren's syndrome: findings in humans and mice. Arthritis Rheum 2008;58(3):734-43
  • Jin JO, Shinohara Y, Yu Q. Innate immune signaling induces IL-7 production from salivary gland cells and accelerates the development of primary sjögren's syndrome in a mouse model. PLoS One 2013;8(10):e77605
  • Nguyen CQ, Ogunniyi AO, Karabiyik A, JC L. Single-cell analysis reveals isotype-specific autoreactive B cell repertoires in Sjögren's syndrome. PLoS One 2013;8(3):e58127
  • Nguyen C, Singson E, Kim JY, et al. Sjögren's syndrome-like disease of C57BL/6.NOD-Aec1 Aec2 mice: gender differences in keratoconjunctivitis sicca defined by a cross-over in the chromosome 3 Aec1 locus. Scand J Immunol 2006;64(3):295-307
  • Nguyen CQ, Cornelius JG, Cooper L, et al. Identification of possible candidate genes regulating Sjogren's syndrome-associated autoimmunity: a potential role for TNFSF4 in autoimmune exocrinopathy. Arthritis Res Ther 2008;10(6):R137
  • Nordmark G, Kristjansdottir G, Theander E, et al. Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjögren's syndrome. Genes Immun 2011;12(2):100-9
  • Sun F, Li P, Chen H, et al. Association studies of TNFSF4, TNFAIP3 and FAM167A-BLK polymorphisms with primary Sjogren's syndrome in Han Chinese. J Hum Genet 2013;58(7):475-9
  • Hang L, Theofilopoulos AN, Dixon FJ. A spontaneous rheumatoid arthritis-like disease in MRL/l mice. J Exp Med 1982;155:1690-701
  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, et al. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992;356:314-17
  • Skarstein K, Johannessen AC, Holmdahl R, Jonsson R. Effects of sialadenitis after cellular transfer in autoimmune MRL/lpr mice. Clin Immunol Immunopathol 1997;84(2):177-84
  • Fleck M, Kern ER, Zhou T, et al. Murine cytomegalovirus induces a Sjögren's syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum 1998;41:2175-84
  • Hang L, Theofilopoulos AN, Dixon FJ. A spontaneous rheumatoid arthritis-like disease in MRL/l mice. J Exp Med 1982;155(6):1690-701
  • Hoffman RW, Alspaugh MA, Waggie KS, et al. Sjogren's syndrome in MRL/l and MRL/n mice. Arthritis Rheum 1984;27(2):157-65
  • Jonsson R, Holmdahl R. Infiltrating mononuclear cells in salivary glands and kidneys in autoimmune MRL/Mp-lpr/lpr mice express IL-2 receptor and produce interferon-gamma. J Oral Pathol Med 1990;19:330-4
  • Jonsson R, Tarkowski A, Backman K, et al. Sialadenitis in the MRL-l mouse: morphological and immunohistochemical characterization of resident and infiltrating cells. Immunology 1987;60:611-16
  • Jonsson R, Pitts A, Mestecky J, Koopman W. Local IgA and IgM rheumatoid factor production in autoimmune MRL/lpr mice. Autoimmunity 1991;10:7-14
  • Haneji N, Hamano H, Yanagi K, Hayashi Y. A new animal model for primary Sjogren's syndrome in NFS/sld mutant mice. J Immunol 1994;153(6):2769-77
  • Haneji N, Nakamura T, Takio K, et al. Identification of alpha-fodrin as a candidate autoantigen in primary Sjogren's syndrome. Science 1997;276(5312):604-7
  • Hayashi Y HN, Hamano H, Yanagi K, et al. Effector mechanism of experimental autoimmune sialadenitis in the mouse model for primary Sjögren's syndrome. Cell Immunol 1996;171:217-25
  • Zandbelt MM VJ, Van De Putte LB, Van Venrooij WJ, Van Den Hoogen FH. Anti-α-fodrin antibodies do not add mLocal adeno-associated virus-mediated interleukin 10 gene transfer has disease-modifying effects in a murine model of Sjögren's syndromeuch to the diagnosis of Sjögren's syndrome. Arthritis Res Ther 2004;6:R33-8
  • Saegusa K, Ishimaru N, Yanagi K, et al. Prevention and induction of autoimmune exocrinopathy is dependent on pathogenic autoantigen cleavage in murine Sjogren's syndrome. J Immunol 2002;169(2):1050-7
  • Vanags DM, Porn-Ares MI, Coppola S, et al. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 1996;271(49):31075-85
  • Yanagi K, Ishimaru N, Haneji N, et al. Anti-120-kDa alpha-fodrin immune response with Th1-cytokine profile in the NOD mouse model of Sjogren's syndrome. Eur J Immunol 1998;28(10):3336-45
  • Witte T, Matthias T, Arnett FC, et al. IgA and IgG autoantibodies against alpha-fodrin as markers for Sjogren's syndrome. Systemic lupus erythematosus. J Rheumatol 2000;27(11):2617-20
  • Saegusa J, Kubota H. Sialadenitis in IQI/Jic mice: a new animal model of Sjogren's syndrome. J Vet Med Sci 1997;59(10):897-903
  • Takada K, Takiguchi M, Konno A, Inaba M. Spontaneous development of multiple glandular and extraglandular lesions in aged IQI/Jic mice: a model for primary Sjogren's syndrome. Rheumatology (Oxford) 2004;43(7):858-62
  • Takada K, Takiguchi M, Konno A, Inaba M. Autoimmunity against a tissue kallikrein in IQI/Jic Mice: a model for Sjogren's syndrome. J Biol Chem 2005;280(5):3982-8
  • El Annan J, Jiang G, Wang D, et al. Elevated immunoglobulin to tissue KLK11 in patients with Sjogren syndrome. Cornea 2013;32(5):e90-3
  • Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 2010;10(12):849-59
  • Kramer S, Schimpl A, Hunig T. Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med 1995;182(6):1769-76
  • Sharma R, Deshmukh US, Zheng L, et al. X-linked Foxp3 (Scurfy) mutation dominantly inhibits submandibular gland development and inflammation respectively through adaptive and innate immune mechanisms. J Immunol 2009;183(5):3212-18
  • Fox RI, Theofilopoulos AN, Altman A. Production of interleukin 2 (IL 2) by salivary gland lymphocytes in Sjogren's syndrome. Detection of reactive cells by using antibody directed to synthetic peptides of IL 2. J Immunol 1985;135(5):3109-15
  • Szodoray P, Papp G, Horvath IF, et al. Cells with regulatory function of the innate and adaptive immune system in primary Sjogren's syndrome. Clin Exp Immunol 2009;157(3):343-9
  • Li X, Qian L, Wang G, et al. T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjogren's syndrome. J Rheumatol 2007;34(12):2438-45
  • Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol 2012;30:221-41
  • Saito I HK, Shimuta M, Inoue H, et al. Fas ligand-mediated exocrinopathy resembling Sjögren's syndrome in mice transgenic for IL-10. J Immunol Methods 1999;162:2488-94
  • Kok MR YS, Lodde BM, Wang J, et al. Local adeno-associated virus-mediated interleukin 10 gene transfer has disease-modifying effects in a murine model of Sjögren's syndrome. Hum Gene Ther 2003;14:1605-18
  • Bertorello R, Cordone MP, Contini P, et al. Increased levels of interleukin-10 in saliva of Sjogren's syndrome patients. Correlation with disease activity. Clin Exp Med 2004;4(3):148-51
  • Perrier S, Serre AF, Dubost JJ, et al. Increased serum levels of interleukin 10 in Sjogren's syndrome; correlation with increased IgG1. J Rheumatol 2000;27(4):935-9
  • Giron-Gonzalez JA, Baturone R, Soto MJ, et al. Implications of immunomodulatory interleukins for the hyperimmunoglobulinemia of Sjogren's syndrome. Cell Immunol 2009;259(1):56-60
  • Font J, Garcia-Carrasco M, Ramos-Casals M, et al. The role of interleukin-10 promoter polymorphisms in the clinical expression of primary Sjogren's syndrome. Rheumatology 2002;41(9):1025-30
  • Origuchi T, Kawasaki E, Ide A, et al. Correlation between interleukin 10 gene promoter region polymorphisms and clinical manifestations in Japanese patients with Sjogren's syndrome. Ann Rheum Dis 2003;62(11):1117-18
  • Willeke P, Gaubitz M, Schotte H, et al. The role of interleukin-10 promoter polymorphisms in primary Sjogren's syndrome. Scand J Rheumatol 2008;37(4):293-9
  • Langrish CL, McKenzie BS, Wilson NJ, et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004;202:96-105
  • McGrath-Morrow S, Laube B, Tzou SC, et al. IL-12 overexpression in mice as a model for Sjogren lung disease. Am J Physiol Lung Cell Mol Physiol 2006;291(4):L837-46
  • Kimura-Shimmyo A KS, Ueda H, Ikeda T, et al. Cytokine-induced injury of the lacrimal and salivary glands. J Immunother 2002;25(suppl 1):S42-51
  • Bombardieri M, Barone F, Pittoni V, et al. Increased circulating levels and salivary gland expression of interleukin-18 in patients with Sjogren's syndrome: relationship with autoantibody production and lymphoid organization of the periductal inflammatory infiltrate. Arthritis Res Ther 2004;6(5):R447-56
  • Horiuchi M, Yamano S, Inoue H, et al. Possible involvement of IL-12 expression by Epstein-Barr virus in Sjogren syndrome. J Clin Pathol 1999;52(11):833-7
  • Shen L, Suresh L, Wu J, et al. A role for lymphotoxin in primary Sjogren's disease. J Immunol 2010;185(10):6355-63
  • Delaleu N, Immervoll H, Cornelius J, Jonsson R. Biomarker profiles in serum and saliva of experimental Sjogren's syndrome: associations with specific autoimmune manifestations. Arthritis Res Ther 2008;10(1):R22
  • Shen L, Suresh L, Li H, et al. IL-14 alpha, the nexus for primary Sjogren's disease in mice and humans. Clin Immunol 2009;130(3):304-12
  • Altorok N, Coit P, Hughes T, et al. Genome-wide DNA methylation patterns in naive CD4 T cells from patients with primary Sjogren's syndrome. Arthritis Rheum 2013. [Epub ahead of print]
  • Bolstad AI, Le Hellard S, Kristjansdottir G, et al. Association between genetic variants in the tumour necrosis factor/lymphotoxin alpha/lymphotoxin beta locus and primary Sjogren's syndrome in Scandinavian samples. Ann Rheum Dis 2012;71(6):981-8
  • Turpie B, Yoshimura T, Gulati A, et al. Sjogren's syndrome-like ocular surface disease in thrombospondin-1 deficient mice. Am J Pathol 2009;175(3):1136-47
  • Contreras-Ruiz L, Regenfuss B, Mir FA, et al. Conjunctival Inflammation in Thrombospondin-1 Deficient Mouse Model of Sjogren's Syndrome. PLoS One 2013;8(9):e75937
  • Mackay F SP. Cracking the BAFF code. Nat Rev Immunol 2009;9:491-502
  • Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J Clin Invest 2002;109(1):59-68
  • Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999;190(11):1697-710
  • Batten M FC, Ng LG, Groom J, et al. TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphoma. J immunol 2004;172:812-22
  • Qian Y GN, Xiao J, Wang Y, et al. Deficiency of Act1, a critical modulator of B cell function, leads to development of Sjögren's syndrome. Eur J Immunol 2008;38:2219-28
  • Li X. Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling. Cytokine Growth Factor Rev 2008;41:105-13
  • Qian Y, Giltiay N, Xiao J, et al. Deficiency of Act1, a critical modulator of B cell function, leads to development of Sjogren's syndrome. Eur J Immunol 2008;38(8):2219-28
  • Johnson AC, Davison LM, Giltiay NV, et al. Lack of T cells in Act1-deficient mice results in elevated IgM-specific autoantibodies but reduced lupus-like disease. Eur J Immunol 2012;42(7):1695-705
  • Ishimaru N, Arakaki R, Yoshida S, et al. Expression of the retinoblastoma protein RbAp48 in exocrine glands leads to Sjogren's syndrome-like autoimmune exocrinopathy. J Exp Med 2008;205(12):2915-27
  • Ishimaru N, Arakaki R, Omotehara F, et al. Novel role for RbAp48 in tissue-specific, estrogen deficiency-dependent apoptosis in the exocrine glands. Mol Cell Biol 2006;26(8):2924-35
  • Fleck M, Kern ER, Zhou T, et al. Murine cytomegalovirus induces a Sjogren's syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum 1998;41(12):2175-84
  • Fleck M, Zhang HG, Kern ER, et al. Treatment of chronic sialadenitis in a murine model of Sjogren's syndrome by local fasL gene transfer. Arthritis Rheum 2001;44(4):964-73
  • Hinrichs SH, Nerenberg M, Reynolds RK, et al. A transgenic mouse model for human neurofibromatosis. Science 1987;237(4820):1340-3
  • Green JE, Hinrichs SH, Vogel J, Jay G. Exocrinopathy resembling Sjogren's syndrome in HTLV-1 tax transgenic mice. Nature 1989;341(6237):72-4
  • Molina C, Alliende C, Aguilera S, et al. Basal lamina disorganisation of the acini and ducts of labial salivary glands from patients with Sjogren's syndrome: association with mononuclear cell infiltration. Ann Rheum Dis 2006;65(2):178-83
  • Velozo J, Aguilera S, Alliende C, et al. Severe alterations in expression and localisation of {alpha}6{beta}4 integrin in salivary gland acini from patients with Sjogren syndrome. Ann Rheum Dis 2009;68(6):991-6
  • Kishi S, Saijyo S, Arai M, et al. Resistance to fas-mediated apoptosis of peripheral T cells in human T lymphocyte virus type I (HTLV-I) transgenic mice with autoimmune arthropathy. J Exp Med 1997;186(1):57-64
  • Peebles RS, Maliszewski CR, Sato TA, et al. Abnormal B-cell function in HTLV-I-tax transgenic mice. Oncogene 1995;10(6):1045-51
  • Iwakura Y, Saijo S, Kioka Y, et al. Autoimmunity induction by human T cell leukemia virus type 1 in transgenic mice that develop chronic inflammatory arthropathy resembling rheumatoid arthritis in humans. J Immunol 1995;155(3):1588-98
  • Scofield RH, Asfa S, Obeso D, et al. Immunization with short peptides from the 60-kDa Ro antigen recapitulates the serological and pathological findings as well as the salivary gland dysfunction of Sjogren's syndrome. J Immunol 2005;175(12):8409-14
  • Kurien BT, Asfa S, Li C, et al. Induction of oral tolerance in experimental Sjögren's syndrome autoimmunity. Scand J Immunol Lett 2005;61:418-25
  • Espinosa A, Dardalhon V, Brauner S, et al. Loss of the lupus autoantigenRo52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway. J Exp Med 2009;206:1661-71
  • Kurien BT, Dsouza A, Igoe A, et al. Immunization with 60 kD Ro peptide produces different stages of preclinical autoimmunity in a Sjogren's syndrome model among multiple strains of inbred mice. Clin Exp Immunol 2013;173(1):67-75
  • Matsui M, Motomura D, Karasawa H, et al. Komiya Y ea. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 2000;97:9579e9584
  • Iizuka M, Wakamatsu E, Tsuboi H, et al. Pathogenic role of immune response to M3 muscarinic acetylcholine receptor in Sjögren's syndrome-like sialoadenitis. J Autoimmun 2010;35:383-9
  • He J, Qiang L, Ding Y, et al. The role of muscarinic acetylcholine receptor type 3 polypeptide (M3RP205-220) antibody in the saliva of patients with primary Sjogren's syndrome. Clin Exp Rheumatol 2012;30(3):322-6
  • Tsuboi H, Iizuka M, Asashima H, Sumida T. Anti-M3 muscarinic acetylcholine receptor antibodies and Sjogren's syndrome. Nihon Rinsho Meneki Gakkai Kaishi 2013;36(2):77-85
  • Inagaki Y, Jinno-Yoshida Y, Hamasaki Y, Ueki H. A novel autoantibody reactive with carbonic anhydrase in sera from patients with systemic lupus erythematosus and Sjogren's syndrome. J Dermatol Sci 1991;2(3):147-54
  • Nishimori I, Bratanova T, Toshkov I, et al. Induction of experimental autoimmune sialoadenitis by immunization of PL/J mice with carbonic anhydrase II. J Immunol Methods 1995;154:4865-73
  • Shen L, Suresh L, Lindemann M, et al. Novel autoantibodies in Sjogren's syndrome. Clini Immunol 2012;145(3):251-5
  • Dawson L, Tobin A, Smith P, Gordon T. Antimuscarinic antibodies in Sjogren's syndrome: where are we, and where are we going? Arthritis Rheum 2005;52(10):2984-95
  • Delaleu N, Jonsson R, Koller MM. Sjogren's syndrome. Eur J Oral Sci 2005;113(2):101-13
  • Fox PC, Speight PM. Current concepts of autoimmune exocrinopathy: immunologic mechanisms in the salivary pathology of Sjogren's syndrome. Crit Rev Oral Biol Med 1996;7(2):144-58
  • Fox RI, Kang HI. Pathogenesis of Sjogren's syndrome. Rheum Dis Clin North Am 1992;18(3):517-38
  • Gordon TP, Bolstad AI, Rischmueller M, et al. Autoantibodies in primary Sjogren's syndrome: new insights into mechanisms of autoantibody diversification and disease pathogenesis. Autoimmunity 2001;34(2):123-32
  • Hansen A, Lipsky PE, Dorner T. New concepts in the pathogenesis of Sjogren syndrome: many questions, fewer answers. Curr Opin Rheumatol 2003;15(5):563-70
  • Hansen A, Lipsky PE, Dorner T. Immunopathogenesis of primary Sjogren's syndrome: implications for disease management and therapy. Curr Opin Rheumatol 2005;17(5):558-65
  • Jonsson R, Haga HJ, Gordon TP. Current concepts on diagnosis, autoantibodies and therapy in Sjogren's syndrome. Scand J Rheumatol 2000;29(6):341-8
  • Manthorpe R, Bredberg A, Henriksson G, Larsson A. Progress and regression within primary Sjogren's syndrome. Scand J Rheumatol 2006;35(1):1-6
  • Doyle ME, Boggs L, Attia R, et al. Autoimmune dacryoadenitis of NOD/LtJ mice and its subsequent effects on tear protein composition. Am J Pathol 2007;171(4):1224-36
  • Humphreys-Beher MG, Peck AB. New concepts for the development of autoimmune exocrinopathy derived from studies with the NOD mouse model. Arch Oral Biol 1999;44(Suppl 1):S21-5
  • Bloom DD, St Clair EW, Pisetsky DS, Clarke SH. The anti-La response of a single MRL/Mp-lpr/lpr mouse: specificity for DNA and VH gene usage. Eur J Immunol 1994;24(6):1332-8
  • Jie G, Jiang Q, Rui Z, Yifei Y. Expression of interleukin-17 in autoimmune dacryoadenitis in MRL/lpr mice. Curr Eye Res 2010;35(10):865-71
  • St Clair EW, Kenan D, Burch JA Jr, et al. Anti-La antibody production by MRL-1pr/1pr mice. Analysis of fine specificity. J Immunol 1991;146(6):1885-92
  • Wahren M, Skarstein K, Blange I, et al. MRL/lpr mice produce anti-Ro 52,000 MW antibodies: detection, analysis of specificity and site of production. Immunology 1994;83(1):9-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.