471
Views
28
CrossRef citations to date
0
Altmetric
Reviews

EBV and other viruses as triggers of tertiary lymphoid structures in primary Sjögren’s syndrome

, &

References

  • Ramos-Casals M, Brito-Zerón P, Sisó-Almirall A, Bosch X. Primary Sjogren syndrome. BMJ 2012;344:e3821
  • Mavragani CP, Moutsopoulos HM. Sjögren’s Syndrome. Annu Rev Pathol Mech Dis 2014;9:273-85
  • Goëb V, Salle V, Duhaut P, et al. Clinical significance of autoantibodies recognizing Sjögren’s syndrome A (SSA), SSB, calpastatin and alpha-fodrin in primary Sjögren’s syndrome. Clin Exp Immunol 2007;148(2):281-7
  • Jonsson R, Theander E, Sjöström B, et al. Autoantibodies present before symptom onset in primary Sjögren syndrome. JAMA 2013;310(17):1854-5
  • Theander E, Vasaitis L, Baecklund E, et al. Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjogren’s syndrome. Ann Rheum Dis 2011;70(8):1363-8
  • Barone F, Bombardieri M, Manzo A, et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren’s syndrome. Arthritis Rheum 2005;52(6):1773-84
  • Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006;6(3):205-17
  • Neyt K, Perros F, GeurtsvanKessel CH, et al. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 2012;33(6):297-305
  • Chen S-C, Vassileva G, Kinsley D, et al. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J Immunol 2002;168(3):1001-8
  • Luther SA, Bidgol A, Hargreaves DC, et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 2002;169(1):424-33
  • Luther SA, Lopez T, Bai W, et al. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 2000;12(5):471-81
  • Salomonsson S, Jonsson MV, Skarstein K, et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren’s syndrome. Arthritis Rheum 2003;48(11):3187-201
  • Manzo A, Paoletti S, Carulli M, et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 2005;35(5):1347-59
  • Amft N, Curnow SJ, Scheel-Toellner D, et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren’s syndrome. Arthritis Rheum 2001;44(11):2633-41
  • Serafini B, Rosicarelli B, Magliozzi R, et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 2004;14(2):164-74
  • Armengol M-P, Cardoso-Schmidt CB, Fernández M, et al. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol 2003;170(12):6320-8
  • Armengol MP, Juan M, Lucas-Martín A, et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am J Pathol 2001;159(3):861-73
  • Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 2006;7(4):344-53
  • Corsiero E, Bombardieri M, Manzo A, et al. Role of lymphoid chemokines in the development of functional ectopic lymphoid structures in rheumatic autoimmune diseases. Immunol Lett 2012;145(1-2):62-7
  • Bombardieri M, Pitzalis C. Ectopic lymphoid neogenesis and lymphoid chemokines in Sjogren’s syndrome: at the interplay between chronic inflammation, autoimmunity and lymphomagenesis. Curr Pharm Biotechnol 2012;13(10):1989-96
  • Link A, Vogt TK, Favre S, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 2007;8(11):1255-65
  • Carlsen HS. Disparate lymphoid chemokine expression in mice and men: no evidence of CCL21 synthesis by human high endothelial venules. Blood 2005;106(2):444-6
  • Linterman MA, Beaton L, Yu D, et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med 2010;207(2):353-63
  • King C, Tangye SG, Mackay CR. T Follicular Helper (T FH) Cells in Normal and Dysregulated Immune Responses. Annu Rev Immunol 2008;26(1):741-66
  • Gunn MD, Ngo VN, Ansel KM, et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature 1998;391(6669):799-803
  • Muramatsu M, Kinoshita K, Fagarasan S, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000;102(5):553-63
  • Barone F, Bombardieri M, Rosado MM, et al. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren’s syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J Immunol 2008;180(7):5130-40
  • Manzo A, Vitolo B, Humby F, et al. Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint. Arthritis Rheum 2008;58(11):3377-87
  • Xanthou G, Polihronis M, Tzioufas AG, et al. “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjögren’s syndrome patients: possible participation in lymphoid structure formation. Arthritis Rheum 2001;44(2):408-18
  • Baekkevold ES, Yamanaka T, Palframan RT, et al. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med 2001;193(9):1105-12
  • Bolstad AI, Le Hellard S, Kristjansdottir G, et al. Association between genetic variants in the tumour necrosis factor/lymphotoxin α/lymphotoxin β locus and primary Sjogren’s syndrome in Scandinavian samples. Ann Rheum Dis 2012;71(6):981-8
  • Bombardieri M, Barone F, Humby F, et al. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjögren’s syndrome. J Immunol 2007;179(7):4929-38
  • Le Pottier L, Devauchelle V, Fautrel A, et al. Ectopic Germinal Centers Are Rare in Sjogren’s Syndrome Salivary Glands and Do Not Exclude Autoreactive B Cells. J Immunol 2009;182(6):3540-7
  • Jonsson MV, Skarstein K, Jonsson R, Brun JG. Serological implications of germinal center-like structures in primary Sjögren’s syndrome. J Rheumatol 2007;34(10):2044-9
  • Rönnblom L, Eloranta M-L. The interferon signature in autoimmune diseases. Curr Opin Rheumatol 2013;25(2):248-53
  • Hjelmervik TOR, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum 2005;52(5):1534-44
  • Gottenberg J-E, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc Natl Acad Sci USA 2006;103(8):2770-5
  • Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999;284(5421):1835-7
  • Zheng L, Zhang Z, Yu C, et al. Association between IFN-alpha and primary Sjogren’s syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107(1):e12-18
  • Brkic Z, Maria NI, van Helden Meeuwsen CG, et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren’s syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis 2013;72(5):728-35
  • Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis 2003;62(2):168-71
  • Ittah M, Miceli-Richard C, Gottenberg J-E, et al. B-cell-activating factor expressions in salivary epithelial cells after dsRNA virus infection depends on RNA-activated protein kinase activation. Eur J Immunol 2009;39(5):1271-9
  • Miceli-Richard C, Comets E, Loiseau P, et al. Association of an IRF5 gene functional polymorphism with Sjögren’s syndrome. Arthritis Rheum 2007;56(12):3989-94
  • Gestermann N, Mekinian A, Comets E, et al. STAT4 is a confirmed genetic risk factor for Sjögren’s syndrome and could be involved in type 1 interferon pathway signaling. Genes Immun 2010;11(5):432-8
  • Lessard CJ, Li H, Adrianto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat Genet 2013;45(11):1284-92
  • Rusakiewicz S, Nocturne G, Lazure T, et al. NCR3/NKp30 Contributes to Pathogenesis in Primary Sjogren’s Syndrome. Sci Transl Med 2013;5(195):195ra96
  • Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004;4(10):757-68
  • Küppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol 2003;3(10):801-12
  • Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 2001;1(1):75-82
  • Maeda E, Akahane M, Kiryu S, et al. Spectrum of Epstein-Barr virus-related diseases: a pictorial review. Jpn J Radiol 2009;27(1):4-19
  • Fox RI, Pearson G, Vaughan JH. Detection of Epstein-Barr virus-associated antigens and DNA in salivary gland biopsies from patients with Sjogren’s syndrome. J Immunol 1986;137(10):3162-8
  • Maitland N, Flint S, Scully C, Crean SJ. Detection of cytomegalovirus and Epstein-Barr virus in labial salivary glands in Sjogren’s syndrome and non-specific sialadenitis. J Oral Pathol Med 1995;24(7):293-8
  • Yamaoka K, Miyasaka N, Yamamoto K. Possible involvement of Epstein-Barr virus in polyclonal B cell activation in Sjögren’s syndrome. Arthritis Rheum 1988;31(8):1014-21
  • Saito I, Servenius B, Compton T, Fox RI. Detection of Epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren’s syndrome. J Exp Med 1989;169(6):2191-8
  • Wen S, Shimizu N, Yoshiyama H, et al. Association of Epstein-Barr virus (EBV) with Sjögren’s syndrome: differential EBV expression between epithelial cells and lymphocytes in salivary glands. Am J Pathol 1996;149(5):1511
  • Pflugfelder SC, Crouse CA, Atherton SS. Epstein-Barr virus and the lacrimal gland pathology of Sjögren’s syndrome. Adv Exp Med Biol 1994;350:641-6
  • Mariette X, Gozlan J, Clerc D, et al. Detection of Epstein-Barr virus DNA by in situ hybridization and polymerase chain reaction in salivary gland biopsy specimens from patients with Sjögren’s syndrome. Am J Med 1991;90(3):286-94
  • DiGiuseppe JA, Wu TC, Corio RL. Analysis of Epstein-Barr virus-encoded small RNA 1 expression in benign lymphoepithelial salivary gland lesions. Mod Pathol 1994;7(5):555-9
  • Venables PJ, Teo CG, Baboonian C, et al. Persistence of Epstein-Barr virus in salivary gland biopsies from healthy individuals and patients with Sjögren’s syndrome. Clin Exp Immunol 1989;75(3):359-64
  • Deacon LM, Shattles WG, Mathews JB, et al. Frequency of EBV DNA detection in Sjögren’s syndrome. Am J Med 1992;92(4):453-4
  • Tateishi M, Saito I, Yamamoto K, Miyasaka N. Spontaneous production of Epstein-Barr virus by B lymphoblastoid cell lines obtained from patients with Sjögren’s syndrome. Possible involvement of a novel strain of Epstein-Barr virus in disease pathogenesis. Arthritis Rheum 1993;36(6):827-35
  • Kohm AP, Fuller KG, Miller SD. Mimicking the way to autoimmunity: an evolving theory of sequence and structural homology. Trends Microbiol 2003;11(3):101-5
  • Lerner MR, Andrews NC, Miller G, Steitz JA. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 1981;78(2):805-9
  • Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity 2006;39(1):63-70
  • Inoue H, Tsubota K, Ono M, et al. Possible involvement of EBV-mediated alpha-fodrin cleavage for organ-specific autoantigen in Sjogren’s syndrome. J Immunol 2001;166(9):5801-9
  • Haneji N, Nakamura T, Takio K, et al. Identification of alpha-fodrin as a candidate autoantigen in primary Sjögren’s syndrome. Science 1997;276(5312):604-7
  • Navone R, Lunardi C, Gerli R, et al. Identification of tear lipocalin as a novel autoantigen target in Sjögren’s syndrome. J Autoimmun 2005;25(3):229-34
  • Vernant JC, Buisson G, Magdeleine J, et al. T-lymphocyte alveolitis, tropical spastic paresis, and Sjögren syndrome. Lancet 1988;1(8578):177
  • Green JE, Hinrichs SH, Vogel J, Jay G. Exocrinopathy resembling Sjögren’s syndrome in HTLV-1 tax transgenic mice. Nature 1989;341(6237):72-4
  • Eguchi K, Matsuoka N, Ida H, et al. Primary Sjögren’s syndrome with antibodies to HTLV-I: clinical and laboratory features. Ann Rheum Dis 1992;51(6):769-76
  • Shattles WG, Brookes SM, Venables PJ, et al. Expression of antigen reactive with a monoclonal antibody to HTLV-1 P19 in salivary glands in Sjögren’s syndrome. Clin Exp Immunol 1992;89(1):46-51
  • Mariette X, Agbalika F, Daniel MT, et al. Detection of human T lymphotropic virus type I tax gene in salivary gland epithelium from two patients with Sjögren’s syndrome. Arthritis Rheum 1993;36(10):1423-8
  • Sumida T, Yonaha F, Maeda T, et al. Expression of sequences homologous to HTLV-I tax gene in the labial salivary glands of Japanese patients with Sjögren’s syndrome. Arthritis Rheum 1994;37(4):545-50
  • Lee SJ, Lee JS, Shin MG, et al. Detection of HTLV-1 in the Labial Salivary Glands of Patients with Sjogren’s Syndrome: a Distinct Clinical Subgroup? J Rheumatol 2012;39(4):809-15
  • Ohyama Y, Nakamura S, Hara H, et al. Accumulation of human T lymphotropic virus type I-infected T cells in the salivary glands of patients with human T lymphotropic virus type I-associated Sjögren’s syndrome. Arthritis Rheum 1998;41(11):1972-8
  • Hida A, Imaizumi M, Sera N, et al. Association of human T lymphotropic virus type I with Sjogren syndrome. Ann Rheum Dis 2010;69(11):2056-7
  • Nelson PN, Lever AM, Bruckner FE, et al. Polymerase chain reaction fails to incriminate exogenous retroviruses HTLV-I and HIV-1 in rheumatological diseases although a minority of sera cross react with retroviral antigens. Ann Rheum Dis 1994;53(11):749-54
  • Triantafyllopoulou A, Moutsopoulos HM. Autoimmunity and coxsackievirus infection in primary Sjogren’s syndrome. Ann N Y Acad Sci 2005;1050:389-96
  • Triantafyllopoulou A, Tapinos N, Moutsopoulos HM. Evidence for coxsackievirus infection in primary Sjögren’s syndrome. Arthritis Rheum 2004;50(9):2897-902
  • Stathopoulou EA, Routsias JG, Stea EA, et al. Cross-reaction between antibodies to the major epitope of Ro60 kD autoantigen and a homologous peptide of Coxsackie virus 2B protein. Clin Exp Immunol 2005;141(1):148-54
  • Gottenberg J-E, Pallier C, Ittah M, et al. Failure to confirm coxsackievirus infection in primary Sjögren’s syndrome. Arthritis Rheum 2006;54(6):2026-8
  • Viskari H, Ludvigsson J, Uibo R, et al. Relationship between the incidence of type 1 diabetes and enterovirus infections in different European populations: results from the EPIVIR project. J Med Virol 2004;72(4):610-17
  • Fleck M, Kern ER, Zhou T, et al. Murine cytomegalovirus induces a Sjögren’s syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum 1998;41(12):2175-84
  • Skarstein K, Wahren M, Zaura E, et al. Characterization of T Cell Receptor Repertoire and Anti-Ro/SSA Autoantibodies in Relation to Sialadenitis of NOD Mice. Autoimmunity 1995;22(1):9-16
  • Murakami J, Shimizu Y, Kashii Y, et al. Functional B-cell response in intrahepatic lymphoid follicles in chronic hepatitis C. Hepatology 1999;30(1):143-50
  • Minutello MA, Pileri P, Unutmaz D, et al. Compartmentalization of T lymphocytes to the site of disease: intrahepatic CD4+ T cells specific for the protein NS4 of hepatitis C virus in patients with chronic hepatitis C. J Exp Med 1993;178(1):17-25
  • Cerny A, Chisari FV. Pathogenesis of chronic hepatitis C: immunological features of hepatic injury and viral persistence. Hepatology 1999;30(3):595-601
  • Sansonno D, Tucci FA, Troiani L, et al. Increased serum levels of the chemokine CXCL13 and up-regulation of its gene expression are distinctive features of HCV-related cryoglobulinemia and correlate with active cutaneous vasculitis. Blood 2008;112(5):1620-7
  • Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002;554-8
  • Ramos-Casals M, García-Carrasco M, Cervera R, et al. Hepatitis C virus infection mimicking primary Sjögren syndrome. A clinical and immunologic description of 35 cases. Medicine (Baltimore) 2001;80(1):1-8
  • Arrieta JJ, Rodríguez-Iñigo E, Ortiz-Movilla N, et al. In situ detection of hepatitis C virus RNA in salivary glands. Am J Pathol 2001;158(1):259-64
  • Toussirot E, Le Huédé G, Mougin C, et al. Presence of hepatitis C virus RNA in the salivary glands of patients with Sjögren’s syndrome and hepatitis C virus infection. J Rheumatol 2002.29(11): 2382-5
  • Koike K, Moriya K, Ishibashi K, et al. Expression of hepatitis C virus envelope proteins in transgenic mice. J Gen Virol 1995;76(Pt 12):3031-8
  • Ramos-Casals M, Loustaud-Ratti V, De Vita S, et al. Sjögren syndrome associated with hepatitis C virus: a multicenter analysis of 137 cases. Medicine (Baltimore) 2005;84(2):81-9
  • Tschernig T, Pabst R. Bronchus-Associated Lymphoid Tissue (BALT) Is Not Present in the Normal Adult Lung but in Different Diseases. Pathobiology 2000;68(1):1-8
  • Rangel-Moreno J, Hartson L, Navarro C, et al. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest 2006;116(12):3183-94
  • Rangel-Moreno J, Moyron-Quiroz JE, Hartson L, et al. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc Natl Acad Sci USA 2007;104(25):10577-82
  • Lund FE, Partida-Sánchez S, Lee BO, et al. Lymphotoxin-alpha-deficient mice make delayed, but effective, T and B cell responses to influenza. J Immunol 2002;169(9):5236-43
  • Moyron-Quiroz JE, Rangel-Moreno J, Hartson L, et al. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 2006;25(4):643-54
  • Nguyen CQ, Yin H, Lee BH, et al. Pathogenic effect of interleukin-17A in induction of Sjögren’s syndrome-like disease using adenovirus-mediated gene transfer. Arthritis Res Ther 2010;12(6):R220
  • Bombardieri M, Barone F, Lucchesi D, et al. Inducible Tertiary Lymphoid Structures, Autoimmunity, and Exocrine Dysfunction in a Novel Model of Salivary Gland Inflammation in C57BL/6 Mice. J Immunol 2012;189(7):3767-76
  • Campbell AE, Cavanaugh VJ, Slater JS. The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol 2008;197(2):205-13
  • Serafini B, Rosicarelli B, Franciotta D, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 2007;204(12):2899-912
  • Cavalcante P, Serafini B, Rosicarelli B, et al. Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus. Ann Neurol 2010;67(6):726-38
  • Sargsyan SA, Shearer AJ, Ritchie AM, et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 2010;74(14):1127-35
  • Lassmann H, Niedobitek G, Aloisi F, Middeldorp JM. NeuroproMiSe EBV Working Group. Epstein-Barr virus in the multiple sclerosis brain: a controversial issue – report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011;134(Pt 9):2772-86
  • Willis SN, Stadelmann C, Rodig SJ, et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 2009;132(Pt 12):3318-28
  • Kakalacheva K, Maurer MA, Tackenberg B, et al. Intrathymic Epstein-Barr virus infection is not a prominent feature of myasthenia gravis. Ann Neurol 2011;70(3):508-14
  • Croia C, Serafini B, Bombardieri M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis 2013;72(9):1559-68
  • Croia C, Serafini B, Sutcliffe N, et al. Ectopic lymphoid structures support Epstein-Barr virus persistence and autoreactive plasma cell infection in Sjogren’s syndrome salivary glands. European League Against Rheumatism (EULAR) congress, Madrid, Spain: 2013
  • Farina A, Santarelli R, Gonnella R, et al. The BFRF1 gene of Epstein-Barr virus encodes a novel protein. J Virol 2000;74(7):3235-44
  • Roughan JE, Thorley-Lawson DA. The intersection of Epstein-Barr virus with the germinal center. J Virol 2009;83(8):3968-76
  • Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 2004;350(13):1328-37
  • Pender MP. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 2003;24(11):584-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.