756
Views
29
CrossRef citations to date
0
Altmetric
Review

Decitabine: a promising epi-immunotherapeutic agent in solid tumors

, , , &
Pages 363-375 | Published online: 12 Jan 2015

References

  • Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3(11):991-8
  • Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest 2007;117(5):1137-46
  • Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006;90:51-81
  • Daskalakis M, Blagitko-Dorfs N, Hackanson B. Decitabine. Recent Results Cancer Res 2010;184:131-57
  • Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 2007;109(1):52-7
  • Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004;103(5):1635-40
  • Aparicio A, Weber JS. Review of the clinical experience with 5-azacytidine and 5-aza-2’-deoxycytidine in solid tumors. Curr Opin Investig Drugs 2002;3(4):627-33
  • Cowan LA, Talwar S, Yang AS. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics 2010;2(1):71-86
  • Azad N, Zahnow CA, Rudin CM, et al. The future of epigenetic therapy in solid tumours–lessons from the past. Nat Rev Clin Oncol 2013;10(5):256-66
  • Oki Y, Aoki E, Issa JP. Decitabine-bedside to bench. Crit Rev Oncol Hematol 2007;61(2):140-52
  • Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980;20(1):85-93
  • Christman JK. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002;21(35):5483-95
  • de Vos D, van Overveld W. Decitabine: a historical review of the development of an epigenetic drug. Ann Hematol 2005;84(Suppl 1):3-8
  • Maio M, Coral S, Fratta E, et al. Epigenetic targets for immune intervention in human malignancies. Oncogene 2003;22(42):6484-8
  • Sigalotti L, Coral S, Fratta E, et al. Epigenetic modulation of solid tumors as a novel approach for cancer immunotherapy. Semin Oncol 2005;32(5):473-8
  • Derissen EJ, Beijnen JH, Schellens JH. Concise drug review: azacitidine and decitabine. Oncologist 2013;18(5):619-24
  • Chuang JC, Warner SL, Vollmer D, et al. S110, a 5-Aza-2’-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 2010;9(5):1443-50
  • Schirrmacher E, Beck C, Brueckner B, et al. Synthesis and in vitro evaluation of biotinylated RG108: a high affinity compound for studying binding interactions with human DNA methyltransferases. Bioconjug Chem 2006;17(2):261-6
  • Liu H, Xue ZT, Sjogren HO, et al. Low dose Zebularine treatment enhances immunogenicity of tumor cells. Cancer Lett 2007;257(1):107-15
  • Marks P, Rifkind RA, Richon VM, et al. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001;1(3):194-202
  • Miranda TB, Cortez CC, Yoo CB, et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 2009;8(6):1579-88
  • Basavapathruni A, Olhava EJ, Daigle SR, et al. Nonclinical pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor. Biopharm Drug Dispos 2014;35(4):237-52
  • Fang F, Balch C, Schilder J, et al. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 2010;116(17):4043-53
  • Stewart DJ, Issa JP, Kurzrock R, et al. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 2009;15(11):3881-8
  • Schwartsmann G, Schunemann H, Gorini CN, et al. A phase I trial of cisplatin plus decitabine, a new DNA-hypomethylating agent, in patients with advanced solid tumors and a follow-up early phase II evaluation in patients with inoperable non-small cell lung cancer. Invest New Drugs 2000;18(1):83-91
  • Chu BF, Karpenko MJ, Liu Z, et al. Phase I study of 5-aza-2’-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol 2013;71(1):115-21
  • Thibault A, Figg WD, Bergan RC, et al. A phase II study of 5-aza-2’deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 1998;84(1):87-9
  • Garrido-Laguna I, McGregor KA, Wade M, et al. A phase I/II study of decitabine in combination with panitumumab in patients with wild-type (wt) KRAS metastatic colorectal cancer. Invest New Drugs 2013;31(5):1257-64
  • Momparler RL, Bouffard DY, Momparler LF, et al. Pilot phase I-II study on 5-aza-2’-deoxycytidine (Decitabine) in patients with metastatic lung cancer. Anticancer Drugs 1997;8(4):358-68
  • Momparler RL, Ayoub J. Potential of 5-aza-2’-deoxycytidine (Decitabine) a potent inhibitor of DNA methylation for therapy of advanced non-small cell lung cancer. Lung cancer 2001;34(Suppl 4):S111-15
  • Stathis A, Hotte SJ, Chen EX, et al. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Clin Cancer Res 2011;17(6):1582-90
  • Appleton K, Mackay HJ, Judson I, et al. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol 2007;25(29):4603-9
  • George RE, Lahti JM, Adamson PC, et al. Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer 2010;55(4):629-38
  • Fan H, Lu X, Wang X, et al. Low-dose decitabine-based chemoimmunotherapy for patients with refractory advanced solid tumors: a phase I/II report. J Immunol Res 2014;2014:371087
  • Nie J, Liu L, Li X, et al. Decitabine, a new star in epigenetic therapy: the clinical application and biological mechanism in solid tumors. Cancer Lett 2014;354(1):12-20
  • Kurkjian C, Kummar S, Murgo AJ. DNA methylation: its role in cancer development and therapy. Curr Probl Cancer 2008;32(5):187-235
  • Barton CA, Hacker NF, Clark SJ, et al. DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecol Oncol 2008;109(1):129-39
  • Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 2005;135(11):2703-9
  • Stewart DJ, Nunez MI, Jelinek J, et al. Impact of decitabine on immunohistochemistry expression of the putative tumor suppressor genes FHIT, WWOX, FUS1 and PTEN in clinical tumor samples. Clin Epigenetics 2014;6(1):13
  • Schrump DS, Fischette MR, Nguyen DM, et al. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 2006;12(19):5777-85
  • Ahmad M, Rees RC, Ali SA. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 2004;53(10):844-54
  • Seliger B, Cabrera T, Garrido F, et al. HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 2002;12(1):3-13
  • Wang LX, Mei ZY, Zhou JH, et al. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLoS One 2013;8(5):e62924
  • Suri A, Saini S, Sinha A, et al. Cancer testis antigens: a new paradigm for cancer therapy. Oncoimmunology 2012;1(7):1194-6
  • Spiotto MT, Yu P, Rowley DA, et al. Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 2002;17(6):737-47
  • Simpson AJ, Caballero OL, Jungbluth A, et al. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005;5(8):615-25
  • Zendman AJ, Ruiter DJ, Van Muijen GN. Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 2003;194(3):272-88
  • Vatolin S, Abdullaev Z, Pack SD, et al. Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes. Cancer Res 2005;65(17):7751-62
  • Hong JA, Kang Y, Abdullaev Z, et al. Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer Res 2005;65(17):7763-74
  • Coral S, Sigalotti L, Altomonte M, et al. 5-Aza-2’-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin Cancer Res 2002;8(8):2690-5
  • Odunsi K, Matsuzaki J, James SR, et al. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res 2014;2(1):37-49
  • Chou J, Voong LN, Mortales CL, et al. Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 2012;35(2):131-41
  • Konkankit VV, Kim W, Koya RC, et al. Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas ligand pathway. J Transl Med 2011;9:192
  • Xiao WH, Sanren GW, Zhu JH, et al. Effect of 5-aza-2’-deoxycytidine on immune-associated proteins in exosomes from hepatoma. World J Gastroenterol 2010;16(19):2371-7
  • Bao L, Dunham K, Lucas K. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother 2011;60(9):1299-307
  • Almstedt M, Blagitko-Dorfs N, Duque-Afonso J, et al. The DNA demethylating agent 5-aza-2’-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leuk Res 2010;34(7):899-905
  • Odunsi K, Matsuzaki J, Karbach J, et al. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci USA 2012;109(15):5797-802
  • Kulkarni P, Shiraishi T, Rajagopalan K, et al. Cancer/testis antigens and urological malignancies. Nat Rev Urol 2012;9(7):386-96
  • Smith HA, Cronk RJ, Lang JM, McNeel DG. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res 2011;71(21):6785-95
  • Krishnadas DK, Bao L, Bai F, et al. Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1. Tumour Biol 2014;35(6):5753-62
  • Sigalotti L, Fratta E, Coral S, et al. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2’-deoxycytidine. Cancer Res 2004;64(24):9167-71
  • Fratta E, Sigalotti L, Colizzi F, et al. Epigenetically regulated clonal heritability of CTA expression profiles in human melanoma. J Cell Physiol 2010;223(2):352-8
  • Jager E, Ringhoffer M, Altmannsberger M, et al. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 1997;71(2):142-7
  • Jungbluth AA, Stockert E, Chen YT, et al. Monoclonal antibody MA454 reveals a heterogeneous expression pattern of MAGE-1 antigen in formalin-fixed paraffin embedded lung tumours. Br J Cancer 2000;83(4):493-7
  • Jungbluth AA, Chen YT, Stockert E, et al. Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 2001;92(6):856-60
  • dos Santos NR, Torensma R, de Vries TJ, et al. Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Res 2000;60(6):1654-62
  • Ploegh HL. Viral strategies of immune evasion. Science 1998;280(5361):248-53
  • Garrido F, Ruiz-Cabello F, Cabrera T, et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 1997;18(2):89-95
  • Ruiz-Cabello F, Klein E, Garrido F. MHC antigens on human tumors. Immunol Lett 1991;29(3):181-9
  • Garrido F, Cabrera T, Lopez-Nevot MA, Ruiz-Cabello F. HLA class I antigens in human tumors. Adv Cancer Res 1995;67:155-95
  • Garrido F, Cabrera T, Concha A, et al. Natural history of HLA expression during tumour development. Immunol Today 1993;14(10):491-9
  • Cabrera T, Salinero J, Fernandez MA, et al. High frequency of altered HLA class I phenotypes in laryngeal carcinomas. Hum Immunol 2000;61(5):499-506
  • Nie Y, Yang G, Song Y, et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 2001;22(10):1615-23
  • Guillaudeux T, Rodriguez AM, Girr M, et al. Methylation status and transcriptional expression of the MHC class I loci in human trophoblast cells from term placenta. J Immunol 1995;154(7):3283-99
  • Serrano A, Tanzarella S, Lionello I, et al. Re-expression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2’-deoxycytidine treatment. Int J Cancer 2001;94(2):243-51
  • Adair SJ, Hogan KT. Treatment of ovarian cancer cell lines with 5-aza-2’-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother 2009;58(4):589-601
  • Fonsatti E, Nicolay HJ, Sigalotti L, et al. Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2’-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 2007;13(11):3333-8
  • Coral S, Sigalotti L, Gasparollo A, et al. Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5 -aza-2’-deoxycytidine (5-AZA-CdR). J Immunother 1999;22(1):16-24
  • Polakova K, Bandzuchova E, Kuba D, Russ G. Demethylating agent 5-aza-2’-deoxycytidine activates HLA-G expression in human leukemia cell lines. Leuk Res 2009;33(4):518-24
  • Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008;8(6):467-77
  • Magner WJ, Kazim AL, Stewart C, et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 2000;165(12):7017-24
  • Yu SE, Park SH, Jang YK. Epigenetic silencing of TNFSF7 (CD70) by DNA methylation during progression to breast cancer. Mol Cells 2010;29(2):217-21
  • Cormary C, Gonzalez R, Faye JC, et al. Induction of T-cell antitumor immunity and protection against tumor growth by secretion of soluble human CD70 molecules. Cancer Gene Ther 2004;11(7):497-507
  • Douin-Echinard V, Peron JM, Lauwers-Cances V, et al. Involvement of CD70 and CD80 intracytoplasmic domains in the co-stimulatory signal required to provide an antitumor immune response. Int Immunol 2003;15(3):359-72
  • Kantarjian HM, O’Brien S, Cortes J, et al. Results of decitabine (5-aza-2’deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 2003;98(3):522-8
  • Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006;106(8):1794-803
  • van Groeningen CJ, Leyva A, O’Brien AM, et al. Phase I and pharmacokinetic study of 5-aza-2’-deoxycytidine (NSC 127716) in cancer patients. Cancer Res 1986;46(9):4831-6
  • Aparicio A, Eads CA, Leong LA, et al. Phase I trial of continuous infusion 5-aza-2’-deoxycytidine. Cancer Chemother Pharmacol 2003;51(3):231-9
  • Abele R, Clavel M, Dodion P, et al. The EORTC Early Clinical Trials Cooperative Group experience with 5-aza-2’-deoxycytidine (NSC 127716) in patients with colo-rectal, head and neck, renal carcinomas and malignant melanomas. Eur J Cancer Clin Oncol 1987;23(12):1921-4
  • Plumb JA, Strathdee G, Sludden J, et al. Reversal of drug resistance in human tumor xenografts by 2’-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 2000;60(21):6039-44
  • Iwata H, Sato H, Suzuki R, et al. A demethylating agent enhances chemosensitivity to vinblastine in a xenograft model of renal cell carcinoma. Int J Oncol 2011;38(6):1653-61
  • Liu CM. Cancer of the ovary. N Engl J Med 2005;352(12):1268-9
  • Pohlmann P, DiLeone LP, Cancella AI, et al. Phase II trial of cisplatin plus decitabine, a new DNA hypomethylating agent, in patients with advanced squamous cell carcinoma of the cervix. Am J Clin Oncol 2002;25(5):496-501
  • Tawbi HA, Beumer JH, Tarhini AA, et al. Safety and efficacy of decitabine in combination with temozolomide in metastatic melanoma: a phase I/II study and pharmacokinetic analysis. Ann Oncol 2013;24(4):1112-19
  • Plimack ER, Stewart DJ, Issa JP. Combining epigenetic and cytotoxic therapy in the treatment of solid tumors. J Clin Oncol 2007;25(29):4519-21
  • Valentini V, Cellini F. Radiotherapy in gastric cancer: a systematic review of literature and new perspectives. Expert Rev Anticancer Ther 2007;7(10):1379-93
  • Bar-Sela G, Jacobs KM, Gius D. Histone deacetylase inhibitor and demethylating agent chromatin compaction and the radiation response by cancer cells. Cancer J 2007;13(1):65-9
  • De Schutter H, Kimpe M, Isebaert S, Nuyts S. A systematic assessment of radiation dose enhancement by 5-aza-2’-deoxycytidine and histone deacetylase inhibitors in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2009;73(3):904-12
  • Cho HJ, Kim SY, Kim KH, et al. The combination effect of sodium butyrate and 5-Aza-2’-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol 2009;7:49
  • Wang L, Zhang Y, Li R, et al. 5-aza-2’-Deoxycytidine enhances the radiosensitivity of breast cancer cells. Cancer Biother Radiopharm 2013;28(1):34-44
  • Qiu H, Yashiro M, Shinto O, et al. DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci 2009;100(1):181-8
  • Sigalotti L, Fratta E, Coral S, Maio M. Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol Ther 2014;142(3):339-50
  • Mangano K, Fagone P, Bendtzen K, et al. Hypomethylating agent 5-aza-2’-deoxycytidine (DAC) ameliorates multiple sclerosis in mouse models. J Cell Physiol 2014;229(12):1918-25
  • Guo H, Wang W, Zhao N, et al. Inhibiting cardiac allograft rejection with interleukin-35 therapy combined with decitabine treatment in mice. Transpl Immunol 2013;29(1-4):99-104
  • Lal G, Zhang N, van der Touw W, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009;182(1):259-73
  • Decitabine Followed by Donor Lymphocyte Infusion for Patients With Relapsed Acute Myeloblastic Leukemia (AML) After Allogeneic Stem Cell Transplantation. Available from: https://clinicaltrials.gov/ct2/show/NCT01758367
  • Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 2001;6(1):34-55
  • Plimack ER, Desai JR, Issa JP, et al. A phase I study of decitabine with pegylated interferon alpha-2b in advanced melanoma: impact on DNA methylation and lymphocyte populations. Invest New Drugs 2014;32(5):969-75
  • Gollob JA, Sciambi CJ, Peterson BL, et al. Phase I trial of sequential low-dose 5-aza-2’-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin Cancer Res 2006;12(15):4619-27
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 2000;18:927-74
  • Lu D, Hoory T, Monie A, et al. Treatment with demethylating agent, 5-aza-2’-deoxycytidine enhances therapeutic HPV DNA vaccine potency. Vaccine 2009;27(32):4363-9
  • Krishnadas DK, Shapiro T, Lucas K. Complete remission following decitabine/dendritic cell vaccine for relapsed neuroblastoma. Pediatrics 2013;131(1):e336-41
  • Ponzoni M, Guarnaccia F, Corrias MV, Cornaglia-Ferraris P. Uncoordinate induction and differential regulation of HLA class-I and class-II expression by gamma-interferon in differentiating human neuroblastoma cells. Int J Cancer 1993;55(5):817-23
  • Uemura H, Fujimoto K, Tanaka M, et al. A phase I trial of vaccination of CA9-derived peptides for HLA-A24-positive patients with cytokine-refractory metastatic renal cell carcinoma. Clin Cancer Res 2006;12(6):1768-75
  • Decitabine, Vaccine Therapy, and Pegylated Liposomal Doxorubicin Hydrochloride in Treating Patients With Recurrent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Peritoneal Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01673217
  • 5-Aza-2-deoxycytidine With Pegylated Interferon-alfa 2B: A Phase I Study With Molecular Correlates. Available from: https://clinicaltrials.gov/ct2/show/NCT00886457
  • Forde PM, Reiss KA, Zeidan AM, Brahmer JR. What lies within: novel strategies in immunotherapy for non-small cell lung cancer. Oncologist 2013;18(11):1203-13
  • Wrangle J, Wang W, Koch A, et al. Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget 2013;4(11):2067-79
  • Kim K, Skora AD, Li Z, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA 2014;111(32):11774-9
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007;128(4):683-92
  • Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 2003;33(1):61-5
  • Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002;108(4):475-87
  • Marks PA, Richon VM, Miller T, Kelly WK. Histone deacetylase inhibitors. Adv Cancer Res 2004;91:137-68
  • Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999;21(1):103-7
  • Luszczek W, Cheriyath V, Mekhail TM, Borden EC. Combinations of DNA methyltransferase and histone deacetylase inhibitors induce DNA damage in small cell lung cancer cells: correlation of resistance with IFN-stimulated gene expression. Mol Cancer Ther 2010;9(8):2309-21
  • Oi S, Natsume A, Ito M, et al. Synergistic induction of NY-ESO-1 antigen expression by a novel histone deacetylase inhibitor, valproic acid, with 5-aza-2’-deoxycytidine in glioma cells. J Neurooncol 2009;92(1):15-22
  • Yang D, Torres CM, Bardhan K, et al. Decitabine and vorinostat cooperate to sensitize colon carcinoma cells to Fas ligand-induced apoptosis in vitro and tumor suppression in vivo. J Immunol 2012;188(9):4441-9
  • Decitabine and Vorinostat Conditioning Followed by CD3-/CD19-NK Cells Infusion for High Risk Myelodysplastic Syndromes. Available from: https://clinicaltrials.gov/ct2/show/NCT01593670
  • Esteller M. Epigenetics in cancer. N Engl J Med 2008;358(11):1148-59
  • Digel W, Lubbert M. DNA methylation disturbances as novel therapeutic target in lung cancer: preclinical and clinical results. Crit Rev Oncol Hematol 2005;55(1):1-11
  • Rescigno M, Avogadri F, Curigliano G. Challenges and prospects of immunotherapy as cancer treatment. Biochim Biophys Acta 2007;1776(1):108-23
  • Issa JP. Decitabine. Curr Opin Oncol 2003;15(6):446-51
  • Alcazar O, Achberger S, Aldrich W, et al. Epigenetic regulation by decitabine of melanoma differentiation in vitro and in vivo. Int J Cancer 2012;131(1):18-29
  • Triozzi PL, Aldrich W, Achberger S, et al. Differential effects of low-dose decitabine on immune effector and suppressor responses in melanoma-bearing mice. Cancer Immunol Immunother 2012;61(9):1441-50
  • Kim KH, Choi JS, Kim IJ, et al. Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol 2006;12(35):5651-7
  • Mori M, Inoue H, Mimori K, et al. Expression of MAGE genes in human colorectal carcinoma. Ann Surg 1996;224(2):183-8
  • Woloszynska-Read A, Mhawech-Fauceglia P, Yu J, et al. Intertumor and intratumor NY-ESO-1 expression heterogeneity is associated with promoter-specific and global DNA methylation status in ovarian cancer. Clin Cancer Res 2008;14(11):3283-90
  • Kim KM, Song MH, Kim MJ, et al. A novel cancer/testis antigen KP-OVA-52 identified by SEREX in human ovarian cancer is regulated by DNA methylation. Int J Oncol 2012;41(3):1139-47
  • James SR, Cedeno CD, Sharma A, et al. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 2013;8(8):849-63
  • Woloszynska-Read A, James SR, Link PA, et al. DNA methylation-dependent regulation of BORIS/CTCFL expression in ovarian cancer. Cancer Immun 2007;7:21
  • Natsume A, Wakabayashi T, Tsujimura K, et al. The DNA demethylating agent 5-aza-2’-deoxycytidine activates NY-ESO-1 antigenicity in orthotopic human glioma. Int J Cancer 2008;122(11):2542-53
  • Liu G, Ying H, Zeng G, et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 2004;64(14):4980-6
  • Ayyoub M, Taub RN, Keohan ML, et al. The frequent expression of cancer/testis antigens provides opportunities for immunotherapeutic targeting of sarcoma. Cancer Immun 2004;4:7
  • Gunda V, Cogdill AP, Bernasconi MJ, et al. Potential role of 5-aza-2’-deoxycytidine induced MAGE-A4 expression in immunotherapy for anaplastic thyroid cancer. Surgery 2013;154(6):1456-62
  • Yan M, Himoudi N, Basu BP, et al. Increased PRAME antigen-specific killing of malignant cell lines by low avidity CTL clones, following treatment with 5-Aza-2’-Deoxycytidine. Cancer Immunol Immunother 2011;60(9):1243-55
  • Fujie T, Mori M, Ueo H, et al. Expression of MAGE and BAGE genes in Japanese breast cancers. Ann Oncol 1997;8(4):369-72
  • Weiser TS, Ohnmacht GA, Guo ZS, et al. Induction of MAGE-3 expression in lung and esophageal cancer cells. Ann Thorac Surg 2001;71(1):295-301
  • Pollack SM, Li Y, Blaisdell MJ, et al. NYESO-1/LAGE-1s and PRAME are targets for antigen specific T cells in chondrosarcoma following treatment with 5-Aza-2-deoxycitabine. PLoS One 2012;7(2):e32165
  • Filho PA, Lopez-Albaitero A, Xi L, et al. Quantitative expression and immunogenicity of MAGE-3 and -6 in upper aerodigestive tract cancer. Int J Cancer 2009;125(8):1912-20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.