250
Views
23
CrossRef citations to date
0
Altmetric
Review

Type 1 reaction in leprosy: a model for a better understanding of tissue immunity under an immunopathological condition

, , , , , , , , & show all

References

  • Lienhardt C, Fine PE. Type 1 reaction, neuritis and disability in leprosy. What is the current epidemiological situation? Lepr Rev 1994;65(1):9-33
  • Walker SL, Lockwood DN. Leprosy type 1 (reversal) reactions and their management. Lepr Rev 2008;79(4):372-86
  • Nery JA, Bernardes Filho F, Quintanilha J, et al. Understanding the type 1 reactional state for early diagnosis and treatment: a way to avoid disability in leprosy. An Bras Dermatol 2013;88(5):787-92
  • Fava V, Orlova M, Cobat A, et al. Genetics of leprosy reactions: an overview. Mem Inst Oswaldo Cruz 2012;107(Suppl 1):132-42
  • Donner RS, Shively JA. The “Lucio phenomenon” in diffuse leprosy. Ann Intern Med 1967;67(4):831-6
  • Scollard DM, Smith T, Bhoopat L, et al. Epidemiologic characteristics of leprosy reactions. Int J Lepr Other Mycobact Dis 1994;62(4):559-67
  • Van Brakel WH, Khawas IB, Lucas SB. Reactions in leprosy: an epidemiological study of 386 patients in west Nepal. Lepr Rev 1994;65(3):190-203
  • Kumar B, Dogra S, Kaur I. Epidemiological characteristics of leprosy reactions: 15 years experience from north India. Int J Lepr Other Mycobact Dis 2004;72(2):125-33
  • Naafs B. Treatment duration of reversal reaction: a reappraisal. Back to the past. Lepr Rev 2003;74(4):328-36
  • Raffe SF, Thapa M, Khadge S, et al. Diagnosis and treatment of leprosy reactions in integrated services - the patients’ perspective in Nepal. PLoS Negl Trop Dis 2009;7(3):e2089
  • Pai VV, Tayshetye PU, Ganapati R. A study of standardized regimens of steroid treatment in reactions in leprosy at a referral centre. Indian J Lepr 2012;84(1):9-15
  • Roche M, Convit J, Medina JA, Blomenfeld E. The effects of adrenocorticotropic hormone (ACTH) in lepromatous lepra reaction. Int J Lepr 1951;19(2):137-45
  • Richardus JH, Withington SG, Anderson AM, et al. Adverse events of standardized regimens of corticosteroids for prophylaxis and treatment of nerve function impairment in leprosy: results from the ’TRIPOD’ trials. Lepr Rev 2003;74(4):319-27
  • Legendre DP, Muzny CA, Swiatlo E. Hansen’s disease (Leprosy): current and future pharmacotherapy and treatment of disease-related immunologic reactions. Pharmacotherapy 2012;32(1):27-37
  • Groenen G, Janssens L, Kayembe T, et al. Prospective study on the relationship between intensive bactericidal therapy and leprosy reactions. Int J Lepr Other Mycobact Dis 1986;54(2):236-44
  • Boerrigter G, Ponnighaus JM, Fine PE. Preliminary appraisal of a WHO-recommended multiple drug regimen in paucibacillary leprosy patients in Malawi. Int J Lepr Other Mycobact Dis 1988;56(3):408-17
  • Roche PW, Theuvenet WJ, Britton WJ. Risk factors for type-1 reactions in borderline leprosy patients. Lancet 1991;338(8768):654-7
  • Roche PW, Le Master J, Butlin CR. Risk factors for type 1 reactions in leprosy. Int J Lepr Other Mycobact Dis 1997;65(4):450-5
  • Katoch K, Ramu G, Ramanathan U, et al. Results of a modified WHO regimen in highly bacilliferous BL/LL patients. Int J Lepr Other Mycobact Dis 1989;57(2):451-7
  • Saunderson P, Gebre S, Byass P. Reversal reactions in the skin lesions of AMFES patients: incidence and risk factors. Lepr Rev 2000;71(3):309-17
  • Becx-Bleumink M, Berhe D. Occurrence of reactions, their diagnosis and management in leprosy patients treated with multidrug therapy; experience in the leprosy control program of the All Africa Leprosy and Rehabilitation Training Center (ALERT) in Ethiopia. Int J Lepr Other Mycobact Dis 1992;60(2):173-84
  • Lockwood DN, Vinayakumar S, Stanley JN, et al. Clinical features and outcome of reversal (type 1) reactions in Hyderabad, India. Int J Lepr Other Mycobact Dis 1993;61(1):8-15
  • Smith WC, Nicholls PG, Das L, et al. Predicting neuropathy and reactions in leprosy at diagnosis and before incident events-results from the INFIR cohort study. PLoS Negl Trop Dis 2009;3(8):e500
  • Motta AC, Pereira KJ, Tarquinio DC, et al. Leprosy reactions: coinfections as a possible risk factor. Clinics 2012;67(10):1145-8
  • Saunderson P, Gebre S, Desta K, et al. The pattern of leprosy-related neuropathy in the AMFES patients in Ethiopia: definitions, incidence, risk factors and outcome. Lepr Rev 2000;71(3):285-308
  • Motta AC, Furini RB, Simao JC, et al. The recurrence of leprosy reactional episodes could be associated with oral chronic infections and expression of serum IL-1, TNF-alpha, IL-6, IFN-gamma and IL-10. Braz Dent J 2010;21(2):158-64
  • Sarno EN, Illarramendi X, Nery JA, et al. HIV-M. leprae interaction: can HAART modify the course of leprosy? Public Health Rep 2008;123(2):206-12
  • Menezes VM, Nery JA, Sales AM, et al. Epidemiological and clinical patterns of 92 patients co-infected with HIV and Mycobacterium leprae from Rio de Janeiro State, Brazil. Trans R Soc Trop Med Hyg 2014;108(2):63-70
  • Ustianowski AP, Lawn SD, Lockwood DN. Interactions between HIV infection and leprosy: a paradox. Lancet Infect Dis 2006;6(6):350-60
  • Batista MD, Porro AM, Maeda SM, et al. Leprosy reversal reaction as immune reconstitution inflammatory syndrome in patients with AIDS. Clin Infect Dis 2008;46(6):e56-60
  • Menezes VM, Sales AM, Illarramendi X, et al. Leprosy reaction as a manifestation of immune reconstitution inflammatory syndrome: a case series of a Brazilian cohort. AIDS 2009;23(5):641-3
  • Lockwood DNJ, Lucas SB, Desikan KV, et al. The histological diagnosis of leprosy type 1 reactions: identification of key variables and an analysis of the process of histological diagnosis. J Clin Pathol 2008;61(5):595-600
  • Cooper CL, Mueller C, Sinchaisri TA, et al. Analysis of naturally occurring delayed-type hypersensitivity reactions in leprosy by in situ hybridization. J Exp Med 1989;169(5):1565-81
  • Yamamura M. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 1992;255(5040):12
  • Laal S, Mishra RS, Nath I. Type 1 reactions in leprosy - heterogeneity in T-cell functions related to the background leprosy type. Int J Lepr Other Mycobact Dis 1987;55(3):481-93
  • Modlin RL, Gebhard JF, Taylor CR, Rea TH. In situ characterization of T lymphocyte subsets in the reactional states of leprosy. Clin Exp Immunol 1983;53(1):17-24
  • Uyemura K, Ho CT, Ohmen JD, et al. Selective expansion of V delta 1 + T cells from leprosy skin lesions. J Invest Dermatol 1992;99(6):848-52
  • Modlin RL, Lewis J, Uyemura K, Tigelaar RE. T lymphocytes bearing gamma-delta antigen receptors in skin. Chem Immunol 1992;53:61-74
  • Moraes MO, Sampaio EP, Nery JA, et al. Sequential erythema nodosum leprosum and reversal reaction with similar lesional cytokine mRNA patterns in a borderline leprosy patient. Br J Dermatol 2001;144(1):175-81
  • Sarno EN, Grau GE, Vieira LM, Nery JA. Serum levels of tumour necrosis factor-alpha and interleukin-1 beta during leprosy reactional states. Clin Exp Immunol 1991;84(1):103-8
  • Andrade PR, Amadeu TP, Nery JA, et al. CD123, the plasmocytoid dendritic cell phenotypic marker, is abundant in leprosy type 1 reaction. Br J Dermatol 2015;172(1):268-71
  • Mattos KA, Oliveira VG, D’Avila H, et al. TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: immunoinflammatory platforms associated with bacterial persistence. J Immunol 2011;187(5):2548-58
  • Mattos KA, Lara FA, Oliveira VG, et al. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol 2011;13(2):259-73
  • Algood HM, Lin PL, Flynn JL. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 2005;41(Suppl 3):S189-93
  • Bean AG, Roach DR, Briscoe H, et al. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 1999;162(6):3504-11
  • Chakravarty SD, Zhu G, Tsai MC, et al. Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 2008;76(3):916-26
  • Flynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 1995;2(6):561-72
  • Maeda A, Fadeel B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis 2014;5:e1312
  • Lockwood DN, Suneetha L, Sagili KD, et al. Cytokine and protein markers of leprosy reactions in skin and nerves: baseline results for the North Indian INFIR cohort. PLoS Negl Trop Dis 2011;5(12):e1327
  • Krutzik SR, Ochoa MT, Sieling PA, et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 2003;9(5):525-32
  • Scollard DM, Chaduvula MV, Martinez A, et al. Increased CXC ligand 10 levels and gene expression in type 1 leprosy reactions. Clin Vaccine Immunol 2011;18(6):947-53
  • Stefani MM, Guerra JG, Sousa AL, et al. Potential plasma markers of Type 1 and Type 2 leprosy reactions: a preliminary report. BMC Infect Dis 2009;9:75
  • Fabri M, Stenger S, Shin DM, et al. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med 2011;3(104):104ra102
  • Aranow C. Vitamin D and the immune system. J Investig Med 2011;59(6):881-6
  • Montoya D, Cruz D, Teles RM, et al. Divergence of macrophage phagocytic and antimicrobial programs in leprosy. Cell Host Microbe 2009;6(4):343-53
  • MacKenzie CR, Heseler K, Muller A, Däubener W. Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: tryptophan depletion versus production of toxic kynurenines. Curr Drug Metab 2007;8(3):237-44
  • Pallotta MT, Orabona C, Volpi C, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011;12(9):870-8
  • de Souza Sales J, Lara FA, Amadeu TP, et al. The role of indoleamine 2, 3-dioxygenase in lepromatous leprosy immunosuppression. Clin Exp Immunol 2011;165(2):251-63
  • Moura DF, de Mattos KA, Amadeu TP, et al. CD163 favors Mycobacterium leprae survival and persistence by promoting anti-inflammatory pathways in lepromatous macrophages. Eur J Immunol 2012;42(11):2925-36
  • Robinson CM, Hale PT, Carlin JM. The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J Interferon Cytokine Res 2005;25(1):20-30
  • Orabona C, Pallotta MT, Volpi C, et al. SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc Natl Acad Sci USA 2008;105(52):20828-33
  • Pallotta MT, Orabona C, Volpi C, et al. Proteasomal degradation of indoleamine 2,3-dioxygenase in CD8 dendritic cells is mediated by suppressor of cytokine signaling 3 (SOCS3). Int J Tryptophan Res 2010;3:91-7
  • Teles RM, Graeber TG, Krutzik SR, et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science 2013;339(6126):1448-53
  • Guarda G, Braun M, Staehli F, et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 2011;34(2):213-23
  • Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444(7121):860-7
  • Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 2011;12(11):1035-44
  • Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA 2004;101(13):4560-5
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994;179(4):1109-18
  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011;11(11):723-37
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8(12):958-69
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122(3):787-95
  • Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014;41(1):14-20
  • Verreck FA, de Boer T, Langenberg DM, et al. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 2006;79(2):285-93
  • Rambukkana A, Zanazzi G, Tapinos N, Salzer JL. Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science 2002;296(5569):927-31
  • Masaki T, Qu J, Cholewa-Waclaw J, et al. Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 2013;152(1-2):51-67
  • Masaki T, McGlinchey A, Tomlinson SR, et al. Reprogramming diminishes retention of Mycobacterium leprae in Schwann cells and elevates bacterial transfer property to fibroblasts. F1000Res 2013;2:198
  • Masaki T, McGlinchey A, Cholewa-Waclaw J, et al. Innate immune response precedes Mycobacterium leprae-induced reprogramming of adult Schwann cells. Cell Reprogram 2014;16(1):9-17
  • Petito RB, Amadeu TP, Pascarelli BM, et al. Transforming growth factor-beta1 may be a key mediator of the fibrogenic properties of neural cells in leprosy. J Neuropathol Exp Neurol 2013;72(4):351-66
  • Oliveira RB, Sampaio EP, Aarestrup F, et al. Cytokines and Mycobacterium leprae induce apoptosis in human Schwann cells. J Neuropathol Exp Neurol 2005;64(10):882-90
  • Spierings E, de Boer T, Wieles B, et al. Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J Immunol 2001;166(10):5883-8
  • Oliveira AL, Antunes SL, Teles RM, et al. Schwann cells producing matrix metalloproteinases under Mycobacterium leprae stimulation may play a role in the outcome of leprous neuropathy. J Neuropathol Exp Neurol 2010;69(1):27-39
  • Teles RM, Antunes SL, Jardim MR, et al. Expression of metalloproteinases (MMP-2, MMP-9, and TACE) and TNF-alpha in the nerves of leprosy patients. J Peripher Nerv Syst 2007;12(3):195-204
  • Verhagen C, Faber W, Klatser P, et al. Immunohistological analysis of in situ expression of mycobacterial antigens in skin lesions of leprosy patients across the histopathological spectrum. Association of Mycobacterial lipoarabinomannan (LAM) and Mycobacterium leprae phenolic glycolipid-I (PGL-I) with leprosy reactions. Am J Pathol 1999;154(6):1793-804
  • Weir RE, Butlin CR, Neupane KD, et al. Use of a whole blood assay to monitor the immune response to mycobacterial antigens in leprosy patients: a predictor for type 1 reaction onset? Lepr Rev 1998;69(3):279-93
  • Hamerlinck FF, Klatser PR, Walsh DS, et al. Serum neopterin as a marker for reactional states in leprosy. FEMS Immunol Med Microbiol 1999;24(4):405-9
  • Faber WR, Iyer AM, Fajardo TT, et al. Serial measurement of serum cytokines, cytokine receptors and neopterin in leprosy patients with reversal reactions. Lepr Rev 2004;75(3):274-81
  • Chaitanya VS, Lavania M, Nigam A, et al. Cortisol and proinflammatory cytokine profiles in type 1 (reversal) reactions of leprosy. Immunol Lett 2013;156(1-2):159-67
  • Filippini P, Del Papa N, Sambataro D, et al. Emerging concepts on inhibitors of indoleamine 2,3-dioxygenase in rheumatic diseases. Curr Med Chem 2012;19(31):5381-93
  • Bochud P-Y, Hawn TR, Siddiqui MR, et al. Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis 2008;197(2):253-61
  • Misch EA, Macdonald M, Ranjit C, et al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl Trop Dis 2008;2(5):e231
  • Schuring RP, Hamann L, Faber WR, et al. Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J Infect Dis 2009;199(12):1816-19
  • Berrington WR, Macdonald M, Khadge S, et al. Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states. J Infect Dis 2010;201(9):1422-35
  • Sousa ALM, Fava VM, Sampaio LH, et al. Genetic and immunological evidence implicates interleukin 6 as a susceptibility gene for leprosy type 2 reaction. J Infect Dis 2012;205(9):1417-24
  • Fava VM, Cobat A, Van Thuc N, et al. Association of TNFSF8 regulatory variants with excessive inflammatory responses but not leprosy per se. J Infect Dis 2014. [Epub ahead of print]
  • Chaitanya VS, Jadhav RS, Lavania M, et al. Interleukin-17F single-nucleotide polymorphism (7488T>C) and its association with susceptibility to leprosy. Int J Immunogenet 2014;41(2):131-7
  • Ministério da saúde. Portaria nº 3.125, de 7 de outubro 2010. Ministério da Saúde; Brasília: 2010
  • Jardim MR, Illarramendi X, Nascimento OJM, et al. Pure neural leprosy: steroids prevent neuropathy progression. Arq Neuropsiquiatr 2007;65(4A):969-73
  • Garbino JA, Virmond Mda C, Ura S, et al. A randomized clinical trial of oral steroids for ulnar neuropathy in type 1 and type 2 leprosy reactions. Arq Neuropsiquiatr 2008;66(4):861-7
  • Naafs B. Bangkok Workshop on Leprosy Research. Treatment of reactions and nerve damage. Int J Lepr Other Mycobact Dis 1996;64(Suppl 4):S21-8
  • Marziniak M, Meuth S. Current perspectives on interferon Beta-1b for the treatment of multiple sclerosis. Adv Ther 2014;31(9):915-31
  • Kamm CP, Uitdehaag BM, Polman CH. Multiple Sclerosis: current Knowledge and Future Outlook. Eur Neurol 2014;72(3-4):132-41
  • McNab FW, Ewbank J, Howes A, et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol 2014;193(7):3600-12
  • Rajasekaran S, Kruse K, Kovey K, et al. Therapeutic role of anakinra, an interleukin-1 receptor antagonist, in the management of secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction/macrophage activating syndrome in critically ill children. Pediatr Crit Care Med 2014;15(5):401-8
  • Moll M, Kuemmerle-Deschner JB. Inflammasome and cytokine blocking strategies in autoinflammatory disorders. Clin Immunol 2013;147(3):242-75
  • Zhang H. Anti-IL-1beta therapies. Recent Pat DNA Gene Seq 2011;5(2):126-35
  • Schuller E, Oppel T, Bornhovd E, et al. Tacrolimus ointment causes inflammatory dendritic epidermal cell depletion but no Langerhans cell apoptosis in patients with atopic dermatitis. J Allergy Clin Immunol 2004;114(1):137-43
  • Tsuda K, Yamanaka K, Kitagawa H, et al. Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naive T cells into cytokine-producing mature T cells. PLoS One 2012;7(2):e31465
  • Lin AN. Innovative use of topical calcineurin inhibitors. Dermatol Clin 2010;28(3):535-45
  • Balato A, Paoletti I, De Gregorio V, et al. Tacrolimus does not alter the production of several cytokines and antimicrobial peptide in Malassezia furfur-infected-keratinocytes. Mycoses 2014;57(3):176-83
  • Safa G, Darrieux L, Coic A, Tisseau L. Type 1 leprosy reversal reaction treated with topical tacrolimus along with systemic corticosteroids. Indian J Med Sci 2009;63(8):359-62
  • Anderson DW. Cytokines as drug targets. IDrugs 2001;4(4):375-7
  • Cantini F, Niccoli L, Goletti D. Adalimumab, etanercept, infliximab, and the risk of tuberculosis: data from clinical trials, national registries, and postmarketing surveillance. J Rheumatol 2014;91(Suppl):47-55
  • Scollard DM, Joyce MP, Gillis TP. Development of leprosy and type 1 leprosy reactions after treatment with infliximab: a report of 2 cases. Clin Infect Dis 2006;43(2):e19-22
  • Ramien ML, Wong A, Keystone JS. Severe refractory erythema nodosum leprosum successfully treated with the tumor necrosis factor inhibitor etanercept. Clin Infect Dis 2011;52(5):e133-5
  • Kuenzli S, Saurat JH. Peroxisome proliferator-activated receptors in cutaneous biology. Br J Dermatol 2003;149(2):229-36
  • Kuenzli S, Saurat JH. Effect of topical PPARbeta/delta and PPARgamma agonists on plaque psoriasis: a pilot study. Dermatology 2003;206(3):252-6
  • Pershadsingh HA, Sproul JA, Benjamin E, et al. Treatment of psoriasis with troglitazone therapy. Arch Dermatol 1998;134(10):1304-5
  • Lima EA, Lima MM, Marques CD, et al. Peroxisome proliferator-activated receptor agonists (PPARs): a promising prospect in the treatment of psoriasis and psoriatic arthritis. An Bras Dermatol 2013;88(6):1029-35
  • Ellis CN, Varani J, Fisher GJ, et al. Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. Arch Dermatol 2000;136(5):609-16
  • Teles RM, Teles RB, Amadeu TP, et al. High matrix metalloproteinase production correlates with immune activation and leukocyte migration in leprosy reactional lesions. Infect Immun 2010;78(3):1012-21
  • Gooyit M, Peng Z, Wolter WR, et al. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem Biol 2014;9(1):105-10
  • Mezentsev A, Nikolaev A, Bruskin S. Matrix metalloproteinases and their role in psoriasis. Gene 2014;540(1):1-10
  • Tanaka K, Hashizume M, Mihara M, et al. Anti-interleukin-6 receptor antibody prevents systemic bone mass loss via reducing the number of osteoclast precursors in bone marrow in a collagen-induced arthritis model. Clin Exp Immunol 2014;175(2):172-80
  • Thiolat A, Semerano L, Pers YM, et al. Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumatol 2014;66(2):273-83
  • Geluk A, van Meijgaarden KE, Wilson L, et al. Longitudinal immune responses and gene expression profiles in type 1 leprosy reactions. J Clin Immunol 2014;34(2):245
  • Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 2013;14(10):978-85
  • Sehgal VN, Bhattacharya SN, Jain S. Relapse or late reversal reaction? Int J Lepr Other Mycobact Dis 1990;58(1):118-21
  • World Health Organization. Enhanced global strategy for further reducing the disease burden due to leprosy (2011-2015): operational guidelines (updated). WHO; New Delhi: 2009
  • Bwire R, Kawuma HJ. Hospital-based epidemiological study of reactions, Buluba Hospital, 1985-89. Lepr Rev 1993;64(4):325-9
  • Marlowe SN, Hawksworth RA, Butlin CR, et al. Clinical outcomes in a randomized controlled study comparing azathioprine and prednisolone versus prednisolone alone in the treatment of severe leprosy type 1 reactions in Nepal. Trans R Soc Trop Med Hyg 2004;98(10):602-9
  • Rao PS. Current epidemiology of leprosy in India. Lepr Rev 2006;77(4):292-4
  • Marlowe SN, Leekassa R, Bizuneh E, et al. Response to cyclosporine treatment in Ethiopian and Nepali patients with severe leprosy type 1 reactions. Trans R Soc Trop Med Hyg 2007;101(10):1004-12
  • Walker SL, Nicholls PG, Dhakal S, et al. A phase two randomised controlled double blind trial of high dose intravenous methylprednisolone and oral prednisolone versus intravenous normal saline and oral prednisolone in individuals with leprosy type 1 reactions and/or nerve function impairment. PLoS Negl Trop Dis 2011;5(4):e1041
  • Hong Q, Xia C, Xiangying H, Quan Y. Capsinoids suppress fat accumulation via lipid metabolism. Mol Med Rep 2015;11(3):1669-74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.