146
Views
15
CrossRef citations to date
0
Altmetric
Review

Anticalins®: the lipocalin family as a novel protein scaffold for the development of next-generation immunotherapies

&
Pages 491-501 | Published online: 10 Jan 2014

References

  • Walsh G. Biopharmaceutical benchmarks 2006. Nat. Biotechnol.24(7), 769–776 (2006).
  • Carter PJ. Potent antibody therapeutics by design. Nat. Rev. Immunol.6(5), 343–357 (2006).
  • Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science305(5681), 200–205 (2004).
  • Steinman L. Immune therapy for autoimmune diseases. Science305(5681), 212–216 (2004).
  • Carter P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer1(2), 118–129 (2001).
  • Werner RG. Economic aspects of commercial manufacture of biopharmaceuticals. J. Biotechnol.113(1–3), 171–182 (2004).
  • Fiedler M, Skerra A. Non-antibody scaffolds. In: Handbook of Therapeutic Antibodies. Dübel S (Ed.). WILEY-VCH, Weinheim, Germany 467–499 (2007).
  • Skerra A. Imitating the humoral immune response. Curr. Opin. Chem. Biol.7(6), 683–693 (2003).
  • Nygren PA, Skerra A. Binding proteins from alternative scaffolds. J. Immunol. Methods290(1–2), 3–28 (2004).
  • Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol.23(10), 1257–1268 (2005).
  • Gill DS, Damle NK. Biopharmaceutical drug discovery using novel protein scaffolds. Curr. Opin. Biotechnol.17(6), 653–658 (2006).
  • Åkerström B, Borregaard N, Flower DR, Salier J-S, Lipocalins. Landes Bioscience, Georgetown, TX, USA (2006).
  • Flower DR. The lipocalin protein family: structure and function. Biochem. J.3181–14 (1996).
  • Skerra A. Lipocalins as a scaffold. Biochim. Biophys. Acta1482(1–2), 337–350 (2000).
  • Breustedt DA, Schönfeld DL, Skerra A. Comparative ligand-binding analysis of ten human lipocalins. Biochim. Biophys. Acta1764(2), 161–173 (2006).
  • Lögdberg L, Wester L. Immunocalins: a lipocalin subfamily that modulates immune and inflammatory responses. Biochim. Biophys. Acta1482(1–2), 284–297 (2000).
  • Schlehuber S, Skerra A. Lipocalins in drug discovery: from natural ligand-binding proteins to “anticalins”. Drug Discov. Today10(1), 23–33 (2005).
  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov.2(3), 214–221 (2003).
  • Nasreen A, Vogt M, Kim HJ, Eichinger A, Skerra A. Solubility engineering and crystallization of human apolipoprotein D. Protein Sci.15(1), 190–199 (2006).
  • Kawaguchi R, Yu J, Honda J et al. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science315(5813), 820–825 (2007).
  • Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett.579(3), 773–777 (2005).
  • Wojnar P, Lechner M, Merschak P, Redl B. Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J. Biol. Chem.276(23), 20206–20212 (2001).
  • Fournier T, Medjoubi NN, Porquet D. α-1-acid glycoprotein. Biochim. Biophys. Acta1482(1–2), 157–171 (2000).
  • Paesen GC, Adams PL, Harlos K, Nuttall PA, Stuart DI. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol. Cell3(5), 661–671 (1999).
  • Couillin I, Maillet I, Vargaftig BB et al. Arthropod-derived histamine-binding protein prevents murine allergic asthma. J. Immunol.173(5), 3281–3286 (2004).
  • Waxman L, Connolly TM. Isolation of an inhibitor selective for collagen-stimulated platelet aggregation from the soft tick Ornithodoros moubata. J. Biol. Chem.268(8), 5445–5449 (1993).
  • Nunn MA, Sharma A, Paesen GC et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol.174(4), 2084–2091 (2005).
  • Francischetti IM, Ribeiro JM, Champagne D, Andersen J. Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the blood-sucking bug, Rhodnius prolixus. J. Biol. Chem.275(17), 12639–12650 (2000).
  • Montfort WR, Weichsel A, Andersen JF. Nitrophorins and related antihemostatic lipocalins from Rhodnius prolixus and other blood-sucking arthropods. Biochim. Biophys. Acta1482(1–2), 110–118 (2000).
  • Andersen JF, Francischetti IM, Valenzuela JG, Schuck P, Ribeiro JM. Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect. J. Biol. Chem.278(7), 4611–4617 (2003).
  • Noeske-Jungblut C, Kratzschmar J, Haendler B et al. An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis. J. Biol. Chem.269(7), 5050–5053 (1994).
  • Fuentes-Prior P, Noeske-Jungblut C, Donner P, Schleuning WD, Huber R, Bode W. Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Proc. Natl Acad. Sci. USA94(22), 11845–11850 (1997).
  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell.10(5), 1033–1043 (2002).
  • Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure13(1), 29–41 (2005).
  • Flo TH, Smith KD, Sato S et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature432(7019), 917–921 (2004).
  • Yang J, Goetz D, Li JY et al. An iron delivery pathway mediated by a lipocalin. Mol. Cell10(5), 1045–1056 (2002).
  • Mori K, Lee HT, Rapoport D et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Invest.115(3), 610–621 (2005).
  • Schmidt-Ott KM, Mori K, Kalandadze A et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr. Opin. Nephrol. Hypertens.15(4), 442–449 (2006).
  • Breustedt DA, Korndörfer IP, Redl B, Skerra A. The 1.8-Å crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J. Biol. Chem.280(1), 484–493 (2005).
  • Fluckinger M, Haas H, Merschak P, Glasgow BJ, Redl B. Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob. Agents Chemother.48(9), 3367–3372 (2004).
  • Schmidt FS, Skerra A. The bilin-binding protein of Pieris brassicae. cDNA sequence and regulation of expression reveal distinct features of this insect pigment protein. Eur. J. Biochem.219(3), 855–863 (1994).
  • Beste G, Schmidt FS, Stibora T, Skerra A. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl Acad. Sci. USA96(5), 1898–1903 (1999).
  • Skerra A. ‘Anticalins’: a new class of engineered ligand-binding proteins with antibody-like properties. J. Biotechnol.74(4), 257–275 (2001).
  • Voss EWJ. Fluorescein Hapten: An Immunological Probe. CRC Press, FL, USA (1984).
  • Vopel S, Mühlbach H, Skerra A. Rational engineering of a fluorescein-binding anticalin for improved ligand affinity. Biol. Chem.386(11), 1097–1104 (2005).
  • McCreery T. Digoxigenin labeling. Mol. Biotechnol.7(2), 121–124 (1997).
  • Hauptman PJ, Kelly RA. Digitalis. Circulation99(9), 1265–1270 (1999).
  • Schlehuber S, Beste G, Skerra A. A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J. Mol. Biol.297(5), 1105–1120 (2000).
  • Korndörfer IP, Beste G, Skerra A. Crystallographic analysis of an “anticalin” with tailored specificity for fluorescein reveals high structural plasticity of the lipocalin loop region. Proteins Struct. Funct. Genet.53(1), 121–129 (2003).
  • Korndörfer IP, Schlehuber S, Skerra A. Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. J. Mol. Biol.330(2), 385–396 (2003).
  • Lechat P, Mudgett-Hunter M, Margolies MN, Haber E, Smith TW. Reversal of lethal digoxin toxicity in guinea pigs using monoclonal antibodies and Fab fragments. J. Pharmacol. Exp. Ther.229(1), 210–213 (1984).
  • Kelly R, Peim A, Walz A et al. Reversal of digoxin cardiac toxicity by an Anticalin (Digical II) in the anaesthetized guinea pig. J. Physiol.560P, PC7 (2004).
  • Vogt M, Skerra A. Construction of an artificial receptor protein (“anticalin”) based on the human apolipoprotein D. Chem. Bio. Chem.5(2), 191–199 (2004).
  • Allison JP. Blockade of T cell inhibitory signals: a new paradigm in tumor immunotherapy? Cancer Immun.5(Suppl. 1), 9 (2005).
  • Keler T, Halk E, Vitale L et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J. Immunol.171(11), 6251–6259 (2003).
  • Camacho LH, Ribas A, Glaspy JA et al. Phase 1 clinical trial of anti-CTLA4 human monoclonal antibody CP-675,206 in patients (pts) with advanced solid malignancies. J. Clin. Oncol. (Meeting Abstracts)22(14 Suppl.), 2505 (2004).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100(14), 8372–8377 (2003).
  • Muhsin M, Graham J, Kirkpatrick P. Bevacizumab. Nat. Rev. Drug Discov.3(12), 995–996 (2004).
  • Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat. Rev. Drug Discov.5(2), 147–159 (2006).
  • Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol.23(9), 1137–1146 (2005).
  • Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer2(9), 683–693 (2002).
  • Pastan I. Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol. Immunother.52(5), 338–341 (2003).
  • Palmisano GL, Tazzari PL, Cozzi E et al. Expression of CTLA-4 in nonhuman primate lymphocytes and its use as a potential target for specific immunotoxin-mediated apoptosis: results of in vitro studies. Clin. Exp. Immunol.135(2), 259–266 (2004).
  • Schlehuber S, Skerra A. Duocalins: engineered ligand-binding proteins with dual specificity derived from the lipocalin fold. Biol. Chem.382(9), 1335–1342 (2001).
  • Kenanova V, Wu AM. Tailoring antibodies for radionuclide delivery. Expert Opin. Drug Deliv.3(1), 53–70 (2006).
  • Reichert J, Pavlou A. Monoclonal antibodies market. Nat. Rev. Drug Discov.3(5), 383–384 (2004).
  • Axelsson L, Bergenfeldt M, Ohlsson K. Studies of the release and turnover of a human neutrophil lipocalin. Scand. J. Clin. Lab. Invest.55(7), 577–588 (1995).
  • Osborn BL, Olsen HS, Nardelli B et al. Pharmacokinetic and pharmacodynamic studies of a human serum albumin–interferon-α fusion protein in cynomolgus monkeys. J. Pharmacol. Exp. Ther.303(2), 540–548 (2002).
  • Dennis MS, Zhang M, Meng YG et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem.277(38), 35035–35043 (2002).
  • Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res.21(6), 897–903 (2004).
  • Van Walle I, Gansemans Y, Parren P, Stas P, Lasters L. Immunogenicity screening in protein drug development. Expert Opin. Biol. Ther.7, 405–418 (2007).
  • Lundegaard C, Nielsen M, Lund O. The validity of predicted T-cell epitopes. Trends Biotechnol.24(12), 537–538 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.