44
Views
7
CrossRef citations to date
0
Altmetric
Review

Recent insights into CD4+ T-cell specificity and function in Type 1 diabetes

&
Pages 557-564 | Published online: 10 Jan 2014

References

  • Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N. Engl. J. Med.331(21), 1428–1436 (1994).
  • Harrison LC. Risk assessment, prediction and prevention of Type 1 diabetes. Pediatr. Diabetes2(2), 71–82 (2001).
  • Serreze DV, Leiter EH. Genes and cellular requirements for autoimmune diabetes susceptibility in nonobese diabetic mice. Curr. Dir. Autoimmun.4, 31–67 (2001).
  • Shoda LK, Young DL, Ramanujan S et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity23(2), 115–126 (2005).
  • Maier LM, Wicker LS. Genetic susceptibility to Type 1 diabetes. Curr. Opin. Immunol.17(6), 601–608 (2005).
  • Papaccio G. Insulitis and islet microvasculature in Type 1 diabetes. Histol. Histopathol.8(4), 751–759 (1993).
  • Bendelac A, Carnaud C, Boitard C, Bach JF. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J. Exp. Med.166(4), 823–832 (1987).
  • Haskins K, McDuffie M. Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science249(4975), 1433–1436 (1990).
  • Serreze DV, Chapman HD, Varnum DS et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig µ null mice. J. Exp. Med.184(5), 2049–2053 (1996).
  • Silveira PA, Grey ST. B cells in the spotlight: innocent bystanders or major players in the pathogenesis of Type 1 diabetes. Trends Endocrinol. Metab.17(4), 128–135 (2006).
  • Lampeter EF, McCann SR, Kolb H. Transfer of diabetes Type 1 by bone-marrow transplantation. Lancet351(9102), 568–569 (1998).
  • Martin S, Wolf-Eichbaum D, Duinkerken G et al. Development of Type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N. Engl. J. Med.345(14), 1036–1040 (2001).
  • Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am. J. Hum. Genet.59(5), 1134–1148 (1996).
  • Pugliese A, Eisenbarth GS. Human Type 1 diabetes mellitus: genetic susceptiblity and resistance. In: Type 1 Diabetes. Molecular, Cellular, and Clinical Immunology. Eisenbarth GS, Lafferty KJ (Eds.). Oxford University Press, NY, USA, and Oxford, UK 134–152 (1996).
  • Ridgway WM, Fathman CG. MHC structure and autoimmune T cell repertoire development. Curr. Opin. Immunol.11(6), 638–642 (1999).
  • Sheehy MJ, Scharf SJ, Rowe JR et al. A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles. J. Clin. Invest.83(3), 830–835 (1989).
  • Tomlinson IP, Bodmer WF. The HLA system and the analysis of multifactorial genetic disease. Trends Genet.11(12), 493–498. (1995).
  • Todd JA, Bell JI, McDevitt HO. HLA-DQ β gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature329(6140), 599–604 (1987).
  • Owerbach D, Gabbay KH. Localization of a Type I diabetes susceptibility locus to the variable tandem repeat region flanking the insulin gene. Diabetes42(12), 1708–1714 (1993).
  • Vang T, Congia M, Macis MD et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet.37(12), 1317–1319 (2005).
  • Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423(6939), 506–511 (2003).
  • Morahan G, Huang D, Ymer SI et al. Linkage disequilibrium of a Type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nat. Genet.27(2), 218–221 (2001).
  • Vella A, Cooper JD, Lowe CE et al. Localization of a Type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am. J. Hum. Genet.76(5), 773–779 (2005).
  • Pugliese A, Zeller M, Fernandez A Jr et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for Type 1 diabetes. Nat. Genet.15(3), 293–297 (1997).
  • Bennett ST, Lucassen AM, Gough SC et al. Susceptibility to human Type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat. Genet.9(3), 284–292 (1995).
  • Vafiadis P, Bennett ST, Todd JA et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet.15(3), 289–292 (1997).
  • Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in Type 1 diabetes and other autoimmune diseases. Semin. Immunol.18(4), 207–213 (2006).
  • Boden E, Tang Q, Bour-Jordan H, Bluestone JA. The role of CD28 and CTLA4 in the function and homeostasis of CD4+CD25+ regulatory T cells. Novartis Found. Symp.252, 55–63; discussion 63–56, 106–114 (2003).
  • Cooper AM, Khader SA. IL-12p40: an inherently agonistic cytokine. Trends Immunol.28(1), 33–38 (2007).
  • Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol.4(9), 665–674 (2004).
  • Haskins K. Pathogenic T-cell clones in autoimmune diabetes: more lessons from the NOD mouse. Adv. Immunol.87, 123–162 (2005).
  • Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on Type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin. Exp. Immunol.148(1), 1–16 (2007).
  • Nakayama M, Abiru N, Moriyama H et al. Prime role for an insulin epitope in the development of Type 1 diabetes in NOD mice. Nature435(7039), 220–223 (2005).
  • Krishnamurthy B, Dudek NL, McKenzie MD et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J. Clin. Invest.116(12), 3258–3265 (2006).
  • Baker FJ, Lee M, Chien YH, Davis MM. Restricted islet-cell reactive T cell repertoire of early pancreatic islet infiltrates in NOD mice. Proc. Natl Acad. Sci. USA99(14), 9374–9379 (2002).
  • Gelber C, Paborsky L, Singer S et al. Isolation of nonobese diabetic mouse T-cells that recognize novel autoantigens involved in the early events of diabetes. Diabetes43(1), 33–39 (1994).
  • Brooks-Worrell BM, Starkebaum GA, Greenbaum C, Palmer JP. Peripheral blood mononuclear cells of insulin-dependent diabetic patients respond to multiple islet cell proteins. J. Immunol.157(12), 5668–5674 (1996).
  • Mannering SI, Purcell AW, Honeyman MC, McCluskey J, Harrison LC. Human T-cells recognise N-terminally Fmoc-modified peptide. Vaccine21(25–26), 3638–3646 (2003).
  • Nagvekar N, Corlett L, Jacobson LW et al. Scanning a DRB3*0101 (DR52a)-restricted epitope cross-presented by DR3: overlapping natural and artificial determinants in the human acetylcholine receptor. J. Immunol.162(7), 4079–4087. (1999).
  • Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr. Opin. Immunol.18(1), 92–97 (2006).
  • Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat. Med.6(3), 337–342. (2000).
  • Molberg O, McAdam SN, Korner R et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med.4(6), 713–717. (1998).
  • Girbal-Neuhauser E, Durieux JJ, Arnaud M et al. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J. Immunol.162(1), 585–594 (1999).
  • Kent SC, Chen Y, Bregoli L et al. Expanded T cells from pancreatic lymph nodes of Type 1 diabetic subjects recognize an insulin epitope. Nature435(7039), 224–228 (2005).
  • Mannering SI, Harrison LC, Williamson NA et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J. Exp. Med.202(9), 1191–1197 (2005).
  • You S, Thieblemont N, Alyanakian MA, Bach JF, Chatenoud L. Transforming growth factor-β and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol. Rev.212, 185–202 (2006).
  • Tang Q, Bluestone JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol. Rev.212, 217–237 (2006).
  • Suri-Payer E, Fritzsching B. Regulatory T cells in experimental autoimmune disease. Springer Semin. Immunopathol.28(1), 3–16 (2006).
  • Tang Q, Henriksen KJ, Bi M et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med.199(11), 1455–1465 (2004).
  • Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med.199(11), 1467–1477 (2004).
  • Masteller EL, Warner MR, Tang Q, Tarbell KV, McDevitt H, Bluestone JA. Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J. Immunol.175(5), 3053–3059 (2005).
  • Tarbell KV, Petit L, Zuo X et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J. Exp. Med.204(1), 191–201 (2007).
  • French MB, Allison J, Cram DS et al. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes46(1), 34–39 (1997).
  • Steptoe RJ, Ritchie JM, Harrison LC. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes. J. Clin. Invest.111(9), 1357–1363 (2003).
  • Brusko T, Wasserfall C, McGrail K et al. No alterations in the frequency of FOXP3+ regulatory T-cells in Type 1 diabetes. Diabetes56(3), 604–612 (2007).
  • Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4+CD25+ T-cells from patients with Type 1 diabetes. Diabetes54(1), 92–99 (2005).
  • Glisic-Milosavljevic S, Waukau J, Jailwala P et al. At-risk and recent-onset Type 1 diabetic subjects have increased apoptosis in the CD4+CD25+ T-cell fraction. PLoS ONE2, e146 (2007).
  • Tiittanen M, Huupponen JT, Knip M, Vaarala O. Insulin treatment in patients with Type 1 diabetes induces upregulation of regulatory T-cell markers in peripheral blood mononuclear cells stimulated with insulin in vitro. Diabetes55(12), 3446–3454 (2006).
  • Tree TI, Duinkerken G, Willemen S, de Vries RR, Roep BO. HLA-DQ-regulated T-cell responses to islet cell autoantigens insulin and GAD65. Diabetes53(7), 1692–1699 (2004).
  • Seyfert-Margolis V, Gisler TD, Asare AL et al. Analysis of T-cell assays to measure autoimmune responses in subjects with Type 1 diabetes: results of a blinded controlled study. Diabetes55(9), 2588–2594 (2006).
  • Bingley PJ, Williams AJ, Gale EA. Optimized autoantibody-based risk assessment in family members. Implications for future intervention trials. Diabetes Care22(11), 1796–1801 (1999).
  • Meierhoff G, Ott PA, Lehmann PV, Schloot NC. Cytokine detection by ELISPOT: relevance for immunological studies in Type 1 diabetes. Diabetes Metab. Re.s Rev.18(5), 367–380. (2002).
  • Schloot NC, Meierhoff G, Karlsson Faresjo M et al. Comparison of cytokine ELISpot assay formats for the detection of islet antigen autoreactive T cells. Report of the third immunology of diabetes society T-cell workshop. J. Autoimmun.21(4), 365–376 (2003).
  • Kotani R, Nagata M, Moriyama H et al. Detection of GAD65-reactive T-cells in Type 1 diabetes by immunoglobulin-free ELISPOT assays. Diabetes Care25(8), 1390–1397 (2002).
  • Ott PA, Berner BR, Herzog BA et al. CD28 costimulation enhances the sensitivity of the ELISPOT assay for detection of antigen-specific memory effector CD4 and CD8 cell populations in human diseases. J. Immunol. Methods285(2), 223–235 (2004).
  • Arif S, Tree TI, Astill TP et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J. Clin. Invest.113(3), 451–463 (2004).
  • Alleva DG, Crowe PD, Jin L et al. A disease-associated cellular immune response in Type 1 diabetics to an immunodominant epitope of insulin. J. Clin. Invest.107(2), 173–180. (2001).
  • Ott PA, Herzog BA, Quast S et al. Islet-cell antigen-reactive T cells show different expansion rates and Th1/Th2 differentiation in type 1 diabetic patients and healthy controls. Clin. Immunol.115(1), 102–114 (2005).
  • Ott PA, Dittrich MT, Herzog BA et al. T cells recognize multiple gad65 and proinsulin epitopes in human Type 1 diabetes, suggesting determinant spreading. J. Clin. Immunol.24(4), 327–339 (2004).
  • Endl J, Rosinger S, Schwarz B et al. Coexpression of CD25 and OX40 (CD134) receptors delineates autoreactive T-cells in Type 1 diabetes. Diabetes55(1), 50–60 (2006).
  • Baker C, Chang L, Elsegood KA et al. Activated T cell subsets in human Type 1 diabetes: evidence for expansion of the DR+ CD30+ subpopulation in new-onset disease. Clin. Exp. Immunol.147(3), 472–482 (2007).
  • Kwok WW, Ptacek NA, Liu AW, Buckner JH. Use of class II tetramers for identification of CD4+ T cells. J. Immunol. Methods268(1), 71–81 (2002).
  • Mallone R, Nepom GT. MHC Class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete. Clin. Immunol.110(3), 232–242 (2004).
  • Yang J, Danke NA, Berger D et al. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J. Immunol.176(5), 2781–2789 (2006).
  • Reijonen H, Novak EJ, Kochik S et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in Type 1 diabetic patients and at-risk subjects. Diabetes51(5), 1375–1382. (2002).
  • Danke NA, Yang J, Greenbaum C, Kwok WW. Comparative study of GAD65-specific CD4+ T cells in healthy and Type 1 diabetic subjects. J. Autoimmun.25(4), 303–311 (2005).
  • Oling V, Marttila J, Ilonen J et al. GAD65-and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of Type 1 diabetes patients and at-risk subjects. J. Autoimmun.25(3), 235–243 (2005).
  • Mallone R, Kochik SA, Laughlin EM et al. Differential recognition and activation thresholds in human autoreactive GAD-specific T-cells. Diabetes53(4), 971–977 (2004).
  • Mallone R, Kochik SA, Reijonen H et al. Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood106(8), 2798–2805 (2005).
  • Preda-Pais A, Stan AC, Casares S, Bona C, Brumeanu TD. Efficacy of clonal deletion vs. anergy of self-reactive CD4 T-cells for the prevention and reversal of autoimmune diabetes. J. Autoimmun.25(1), 21–32 (2005).
  • Preda I, McEvoy RC, Lin M et al. Soluble, dimeric HLA DR4–peptide chimeras: an approach for detection and immunoregulation of human type-1 diabetes. Eur. J. Immunol.35(9), 2762–2775 (2005).
  • Kwok WW, Gebe JA, Liu A et al. Rapid epitope identification from complex class-II-restricted T-cell antigens. Trends Immunol.22(11), 583–588. (2001).
  • Dosch H, Cheung RK, Karges W, Pietropaolo M, Becker DJ. Persistent T cell anergy in human Type 1 diabetes. J. Immunol.163(12), 6933–6940. (1999).
  • Mannering SI, Morris JS, Jensen KP et al. A sensitive method for detecting proliferation of rare autoantigen-specific human T cells. J. Immunol. Methods283(1–2), 173–183 (2003).
  • Mannering SI, Dromey JA, Morris JS, Thearle DJ, Jensen KP, Harrison LC. An efficient method for cloning human autoantigen-specific T cells. J. Immunol. Methods298(1–2), 83–92 (2005).
  • Turcanu V, Maleki SJ, Lack G. Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J. Clin. Invest.111(7), 1065–1072 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.