27
Views
0
CrossRef citations to date
0
Altmetric
Review

Lupus genes at the interface of tolerance and autoimmunity

&
Pages 603-611 | Published online: 10 Jan 2014

References

  • Klippel JH. Systemic lupus erythematosus: demographics, prognosis, and outcome. J. Rheumatol. Suppl.48, 67–71 (1997).
  • Hochberg MC. Systemic lupus erythematosus. Rheum. Dis. Clin. North Am.16, 617–639 (1990).
  • Kumar KR, Li L, Yan M et al. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science312, 1665–1669 (2006).
  • Wakeland EK, Wandstrat AE, Liu K, Morel L. Genetic dissection of systemic lupus erythematosus. Curr. Opin. Immunol.11, 701–707 (1999).
  • Yurasov S, Wardemann H, Hammersen J et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med.201, 703–711 (2005).
  • Singh NJ, Schwartz RH. Primer: mechanisms of immunologic tolerance. Nat. Clin. Pract. Rheumatol.2, 44–52 (2006).
  • Goodnow CC, Sprent J, Fazekas de St GB, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature435, 590–597 (2005).
  • Gommerman JL, Carroll MC. Negative selection of B lymphocytes: a novel role for innate immunity. Immunol. Rev.173, 120–130 (2000).
  • Cook HT, Botto M. Mechanisms of disease: the complement system and the pathogenesis of systemic lupus erythematosus. Nat. Clin. Pract. Rheumatol.2, 330–337 (2006).
  • Botto M. Links between complement deficiency and apoptosis. Arthritis Res.3, 207–210 (2001).
  • Krishnan S, Chowdhury B, Tsokos GC. Autoimmunity in systemic lupus erythematosus: integrating genes and biology. Semin. Immunol.18, 230–243 (2006).
  • Botto M, Dell’Agnola C, Bygrave AE et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet.19, 56–59 (1998).
  • Trendelenburg M, Manderson AP, Fossati-Jimack L, Walport MJ, Botto M. Monocytosis and accelerated activation of lymphocytes in C1q-deficient autoimmune-prone mice. Immunology113, 80–88 (2004).
  • Cutler AJ, Cornall RJ, Ferry H, Manderson AP, Botto M, Walport MJ. Intact B cell tolerance in the absence of the first component of the classical complement pathway. Eur. J. Immunol.31, 2087–2093 (2001).
  • Ferry H, Potter PK, Crockford TL et al. Increased positive selection of B1 cells and reduced B cell tolerance to intracellular antigens in c1q-deficient mice. J. Immunol.178, 2916–2922 (2007).
  • Chen Z, Koralov SB, Kelsoe G. Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J. Exp. Med.192, 1339–1352 (2000).
  • Ittiprasert W, Kantachuvesiri S, Pavasuthipaisit K et al. Complete deficiencies of complement C4A and C4B including 2-bp insertion in codon 1213 are genetic risk factors of systemic lupus erythematosus in Thai populations. J. Autoimmun.25, 77–84 (2005).
  • Prodeus AP, Goerg S, Shen LM et al. A critical role for complement in maintenance of self-tolerance. Immunity9, 721–731 (1998).
  • Christensen SR, Shlomchik MJ. Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors. Semin. Immunol.19(1), 11–23 (2007).
  • Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science312, 1669–1672 (2006).
  • Subramanian S, Tus K, Li QZ et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA103, 9970–9975 (2006).
  • Berland R, Fernandez L, Kari E et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity25, 429–440 (2006).
  • Lau CM, Broughton C, Tabor AS et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med.202, 1171–1177 (2005).
  • Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity25, 417–428 (2006).
  • Hur JW, Shin HD, Park BL, Kim LH, Kim SY, Bae SC. Association study of Toll-like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus. Tissue Antigens65, 266–270 (2005).
  • Pascual V, Farkas L, Banchereau J. Systemic lupus erythematosus: all roads lead to type I interferons. Curr. Opin. Immunol.18, 676–682 (2006).
  • Takaoka A, Yanai H, Kondo S et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature434, 243–249 (2005).
  • Reddy MV, Velazquez-Cruz R, Baca V et al. Genetic association of IRF5 with SLE in Mexicans: higher frequency of the risk haplotype and its homozygozity than Europeans. Hum. Genet. (2007) (Epub ahead of print).
  • Graham RR, Kozyrev SV, Baechler EC et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet.38, 550–555 (2006).
  • Demirci FY, Manzi S, Ramsey-Goldman R et al. Association of a common interferon regulatory factor 5 (IRF5) variant with increased risk of systemic lupus erythematosus (SLE). Ann. Hum. Genet.71, 308–311 (2007).
  • Gessner JE, Heiken H, Tamm A, Schmidt RE. The IgG Fc receptor family. Ann. Hematol.76, 231–248 (1998).
  • Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(γ)RIIB-deficient mice results from strain-specific epistasis. Immunity13, 277–285 (2000).
  • Jiang Y, Hirose S, Abe M et al. Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics51, 429–435 (2000).
  • Wu J, Edberg JC, Redecha PB et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J. Clin. Invest.100, 1059–1070 (1997).
  • Siriboonrit U, Tsuchiya N, Sirikong M et al. Association of Fcγ receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens61, 374–383 (2003).
  • Mackay M, Stanevsky A, Wang T et al. Selective dysregulation of the FcγIIB receptor on memory B cells in SLE. J. Exp. Med.203, 2157–2164 (2006).
  • Fukuyama H, Nimmerjahn F, Ravetch JV. The inhibitory Fcγ receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat. Immunol.6, 99–106 (2005).
  • Ashman RF, Peckham D, Stunz LL. Fc receptor off-signal in the B cell involves apoptosis. J. Immunol.157, 5–11 (1996).
  • Wandstrat AE, Nguyen C, Limaye N et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity21, 769–780 (2004).
  • MacKay F, Woodcock SA, Lawton P et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med.190, 1697–1710 (1999).
  • Kalled SL. The role of BAFF in immune function and implications for autoimmunity. Immunol. Rev.204, 43–54 (2005).
  • Ng LG, Mackay CR, MacKay F. The BAFF/APRIL system: life beyond B lymphocytes. Mol. Immunol.42, 763–772 (2005).
  • Tan SM, Xu D, Roschke V et al. Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis. Arthritis Rheum.48, 982–992 (2003).
  • Brink R. Regulation of B cell self-tolerance by BAFF. Semin. Immunol.18, 276–283 (2006).
  • Craxton A, Draves KE, Gruppi A, Clark EA. BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J. Exp. Med.202, 1363–1374 (2005).
  • Oliver PM, Vass T, Kappler J, Marrack P. Loss of the proapoptotic protein, Bim, breaks B cell anergy. J. Exp. Med.203, 731–741 (2006).
  • Ng LG, Sutherland AP, Newton R et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J. Immunol.173, 807–817 (2004).
  • Cohen PL, Eisenberg RA. The lpr and gld genes in systemic autoimmunity: life and death in the Fas lane. Immunol. Today13, 427–428 (1992).
  • Del Rey M, Ruiz-Contreras J, Bosque A et al. A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood108, 1306–1312 (2006).
  • Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest.98, 1107–1113 (1996).
  • Rieux-Laucat F, Le Deist F, Fischer A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death. Differ.10, 124–133 (2003).
  • Roark JH, Kuntz CL, Nguyen KA, Caton AJ, Erikson J. Breakdown of B cell tolerance in a mouse model of systemic lupus erythematosus. J. Exp. Med.181, 1157–1167 (1995).
  • Brard F, Shannon M, Prak EL, Litwin S, Weigert M. Somatic mutation and light chain rearrangement generate autoimmunity in anti-single-stranded DNA transgenic MRL/lpr mice. J. Exp. Med.190, 691–704 (1999).
  • Li Y, Li H, Ni D, Weigert M. Anti-DNA B cells in MRL/lpr mice show altered differentiation and editing pattern. J. Exp. Med.196, 1543–1552 (2002).
  • Rathmell JC, Goodnow CC. Effects of the lpr mutation on elimination and inactivation of self-reactive B cells. J. Immunol.153, 2831–2842 (1994).
  • Eguchi K. Apoptosis in autoimmune diseases. Intern. Med.40, 275–284 (2001).
  • Strasser A, Whittingham S, Vaux DL et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl Acad. Sci. USA88, 8661–8665 (1991).
  • Liphaus BL, Kiss MH, Carrasco S, Goldenstein-Schainberg C. Increased Fas and Bcl-2 expression on peripheral blood T and B lymphocytes from juvenile-onset systemic lupus erythematosus, but not from juvenile rheumatoid arthritis and juvenile dermatomyositis. Clin. Dev. Immunol.13, 283–287 (2006).
  • Miret C, Font J, Molina R et al. Bcl-2 oncogene (B cell lymphoma/leukemia-2) levels correlate with systemic lupus erythematosus disease activity. Anticancer Res.19, 3073–3076 (1999).
  • Miret C, Font J, Molina R et al. Relationship of oncogenes (sFas, Bcl-2) and cytokines (IL-10, α-TNF) with the activity of systemic lupus erythematosus. Anticancer Res.21, 3053–3059 (2001).
  • Lang J, Arnold B, Hammerling G et al. Enforced Bcl-2 expression inhibits antigen-mediated clonal elimination of peripheral B cells in an antigen dose-dependent manner and promotes receptor editing in autoreactive, immature B cells. J. Exp. Med.186, 1513–1522 (1997).
  • Fang W, Weintraub BC, Dunlap B et al. Self-reactive B lymphocytes overexpressing Bcl-xL escape negative selection and are tolerized by clonal anergy and receptor editing. Immunity9, 35–45 (1998).
  • Strasser A, Harris AW, Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell67, 889–899 (1991).
  • Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol.17, 617–625 (2005).
  • Bouillet P, Metcalf D, Huang DC et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science286, 1735–1738 (1999).
  • Enders A, Bouillet P, Puthalakath H, Xu Y, Tarlinton DM, Strasser A. Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim inhibits BCR stimulation-induced apoptosis and deletion of autoreactive B cells. J. Exp. Med.198, 1119–1126 (2003).
  • Bouillet P, Purton JF, Godfrey DI et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature415, 922–926 (2002).
  • Gregersen PK, Lee HS, Batliwalla F, Begovich AB. PTPN22: setting thresholds for autoimmunity. Semin. Immunol.18, 214–223 (2006).
  • Kyogoku C, Langefeld CD, Ortmann WA et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet.75, 504–507 (2004).
  • Baca V, Velazquez-Cruz R, Salas-Martinez G, Espinosa-Rosales F, Saldana-Alvarez Y, Orozco L. Association analysis of the PTPN22 gene in childhood-onset systemic lupus erythematosus in Mexican population. Genes Immun.7, 693–695 (2006).
  • Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan AC. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science303, 685–689 (2004).
  • Okazaki T, Wang J. PD-1/PD-L pathway and autoimmunity. Autoimmunity38, 353–357 (2005).
  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity11, 141–151 (1999).
  • Prokunina L, Castillejo-Lopez C, Oberg F et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat. Genet.32, 666–669 (2002).
  • Thorburn CM, Prokunina-Olsson L, Sterba KA et al. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort. Genes Immun. (2007).
  • Slingsby JH, Norsworthy P, Pearce G et al. Homozygous hereditary C1q deficiency and systemic lupus erythematosus. A new family and the molecular basis of C1q deficiency in three families. Arthritis Rheum.39, 663–670 (1996).
  • Yasutomo K, Horiuchi T, Kagami S et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet.28, 313–314 (2001).
  • Franceschini F, Cavazzana I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity38, 55–63 (2005).
  • Russell AI, Cunninghame Graham DS, Shepherd C et al. Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum. Mol. Genet.13, 137–147 (2004).
  • Graham RR, Ortmann WA, Langefeld CD et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am. J. Hum. Genet.71, 543–553 (2002).
  • Lee YH, Harley JB, Nath SK. CTLA-4 polymorphisms and systemic lupus erythematosus (SLE): a meta-analysis. Hum. Genet.116, 361–367 (2005).
  • Hudson LL, Rocca K, Song YW, Pandey JP. CTLA-4 gene polymorphisms in systemic lupus erythematosus: a highly significant association with a determinant in the promoter region. Hum. Genet.111, 452–455 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.