29
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunoinformatics: an overview of computational tools and techniques for understanding immune function

&
Pages 993-1002 | Published online: 10 Jan 2014

References

  • MacLean M, Miles C. Swift action needed to close the skills gap in bioinformatics. Nature401(6748), 10 (1999).
  • Brenner SE, Koehl P, Levitt M. The ASTRAL compendium for protein structure and sequence analysis. Nucleic Acids Res.28(1), 254–256 (2000).
  • Hu P, Bader G, Wigle DA, Emili A. Computational prediction of cancer-gene function. Nat. Rev.7(1), 23–34 (2007).
  • Lin J, Qian J. Systems biology approach to integrative comparative genomics. Expert Rev. Proteomics4(1), 107–119 (2007).
  • Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLoS Comput. Biol.2(6), e71 (2006).
  • Woodfolk JA. Cytokines as a therapeutic target for allergic diseases: a complex picture. Curr. Pharm. Des.12(19), 2349–2363 (2006).
  • Couto E, Hemminki K. Heritable and environmental components in cervical tumors. Int. J. Cancer119(11), 2699–2701 (2006).
  • Luo AK, Jefferson BK, Garcia MJ, Ginsburg GS, Topol EJ. Challenges in the phenotypic characterisation of patients in genetic studies of coronary artery disease. J. Med. Genet.44(3), 161–165 (2007).
  • Piavaux B, Jeurink PV, Groot PC, Hofman GA, Demant P, Van Oosterhout AJ. Mouse genetic model for antigen-induced airway manifestations of asthma. Genes Immun.8(1), 28–34 (2007).
  • Taramelli R, Acquati F. The human genome project and the discovery of genetic determinants of cancer susceptibility. Eur. J. Cancer40(17), 2537–2543 (2004).
  • Li X, Rao S, Wang Y, Gong B. Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res.32(9), 2685–2694 (2004).
  • Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human αβ T cell receptor diversity. Science286(5441), 958–961 (1999).
  • Jerne NK. The Nobel lectures in immunology. The Nobel Prize for Physiology or Medicine, 1984. The generative grammar of the immune system. Scand. J. Immunol.38(1), 1–9 (1993).
  • Borrebaeck CA, Ohlin M. Antibody evolution beyond nature. Nat. Biotechnol.20(12), 1189–1190 (2002).
  • Robinson J, Waller MJ, Parham P et al. IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res.31(1), 311–314 (2003).
  • Blythe MJ, Flower DR. Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci.14(1), 246–248 (2005).
  • Mehr R. Feedback loops, reversals and nonlinearities in lymphocyte development. Bull. Math. Biol.68(5), 1073–1094 (2006).
  • Brandt ME, Krueger GR, Wang G, Buja LM. Feed-forward and feedback mechanisms in a dynamic model of human T cell development and regulation. In Vivo18(4), 465–470 (2004).
  • Jansson A, Fagerlind M, Karlsson D, Nilsson P, Cooley M. In silico simulations suggest that Th-cell development is regulated by both selective and instructive mechanisms. Immunol. Cell. Biol.84(2), 218–226 (2006).
  • Tian C, Bagley J, Forman D, Iacomini J. Induction of central tolerance by mature T cells. J. Immunol.173(12), 7217–7222 (2004).
  • Mehr R, Shahaf G, Sah A, Cancro M. Asynchronous differentiation models explain bone marrow labeling kinetics and predict reflux between the pre- and immature B cell pools. Int. Immunol.15(3), 301–312 (2003).
  • Petrovsky N, Brusic V. Bioinformatics for study of autoimmunity. Autoimmunity39(8), 635–643 (2006).
  • Marsland BJ, Nembrini C, Schmitz N et al. Innate signals compensate for the absence of PKC-τ during in vivo CD8+ T cell effector and memory responses. Proc. Natl Acad. Sci. USA102(40), 14374–14379 (2005).
  • Hayashizaki Y, Carninci P. Genome Network and FANTOM3: assessing the complexity of the transcriptome. PLoS Genet.2(4), e63 (2006).
  • Silva DG, Schonbach C, Brusic V, Socha LA, Nagashima T, Petrovsky N. Identification of “pathologs” (disease-related genes) from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system. BMC Genomics5(1), 28 (2004).
  • Aidinis V, Carninci P, Armaka M et al. Cytoskeletal rearrangements in synovial fibroblasts as a novel pathophysiological determinant of modeled rheumatoid arthritis. PLoS Genet.1(4), e48 (2005).
  • Maeda N, Kasukawa T, Oyama R et al. Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet.2(4), e62 (2006).
  • Carninci P, Sandelin A, Lenhard B et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genet.38(6), 626–635 (2006).
  • Carninci P, Kasukawa T, Katayama S et al. The transcriptional landscape of the mammalian genome. Science309(5740), 1559–1563 (2005).
  • Brusic V, Zeleznikow J, Petrovsky N. Molecular immunology databases and data repositories. J. Immunol. Methods238(1–2), 17–28 (2000).
  • Foster CB, Chanock SJ. Mining variations in genes of innate and phagocytic immunity: current status and future prospects. Curr. Opin. Hematol.7(1), 9–15 (2000).
  • Rognan D, Lauemoller SL, Holm A, Buus S, Tschinke V. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. J. Med. Chem.42(22), 4650–4658 (1999).
  • Garcia KC, Degano M, Pease LR et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science279(5354), 1166–1172 (1998).
  • Brusic V, Bucci K, Schonbach C, Petrovsky N, Zeleznikow J, Kazura JW. Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding. J. Mol. Graph. Model.19(5), 405–411 (2001).
  • Kepler TB, Perelson AS. Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol. Today14(8), 412–415 (1993).
  • Merrill SJ. Computational models in immunological methods: an historical review. J. Immunol. Methods216(1–2), 69–92 (1998).
  • Louzoun Y. The evolution of mathematical immunology. Immunol. Rev.216, 9–20 (2007).
  • Minar N, Burkhart R, Langton C, Askenazi M. The Swarm simulation system: a toolkit for building multi-agent simulations. Working Paper 11 (1996).
  • Kohler B, Puzone R, Seiden PE, Celada F. A systematic approach to vaccine complexity using an automaton model of the cellular and humoral immune system. I. Viral characteristics and polarized responses. Vaccine19(7–8), 862–876 (2000).
  • Castiglione F, Duca KA, Jarrah A, Laubenbacher R, Hochberg D, Thorley-Lawson DA. Simulating Epstein–Barr virus infection with C-ImmSim. Bioinformatics 23, 1371–1377 (2007).
  • Doytchinova IA, Guan P, Flower DR. EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics7, 131 (2006).
  • Larsen MV, Lundegaard C, Lamberth K et al. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. Immunol.35(8), 2295–2303 (2005).
  • Donnes P, Kohlbacher O. Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci.14(8), 2132–2140 (2005).
  • Nielsen M, Lundegaard C, Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics8, 238 (2007).
  • Guan P, Hattotuwagama CK, Doytchinova IA, Flower DR. MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl. Bioinformatics5(1), 55–61 (2006).
  • Al-Attiyah R, Mustafa AS. Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1-cell peptides in the 24 kDa secreted lipoprotein (LppX) of Mycobacterium tuberculosis. Scand. J. Immunol.59(1), 16–24 (2004).
  • Mustafa AS, Shaban FA. ProPred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis86(2), 115–124 (2006).
  • Gomez-Nunez M, Pinilla-Ibarz J, Dao T et al. Peptide binding motif predictive algorithms correspond with experimental binding of leukemia vaccine candidate peptides to HLA-A*0201 molecules. Leuk. Res.30(10), 1293–1298 (2006).
  • Reche PA, Glutting JP, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Hum. Immunol.63(9), 701–709 (2002).
  • Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics56(6), 405–419 (2004).
  • Shaila MS, Nayak R, Prakash SS et al. Comparative in silico analysis of two vaccine candidates for group A streptococcus predicts that they both may have similar safety profiles. Vaccine25(18), 3567–3573 (2007).
  • Doytchinova IA, Flower DR. Predicting class I major histocompatibility complex (MHC) binders using multivariate statistics: comparison of discriminant analysis and multiple linear regression. J. Chem. Inf. Model.47(1), 234–238 (2007).
  • Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics8, 4 (2007).
  • Doytchinova IA, Flower DR. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine25(5), 856–866 (2007).
  • Davenport MP, Ho Shon IA, Hill AV. An empirical method for the prediction of T-cell epitopes. Immunogenetics42(5), 392–397 (1995).
  • Meister GE, Roberts CG, Berzofsky JA, De Groot AS. Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine13(6), 581–591 (1995).
  • Brusic V, Rudy G, Honeyman G, Hammer J, Harrison L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics14(2), 121–130 (1998).
  • Davies MN, Hattotuwagama CK, Moss DS, Drew MG, Flower DR. Statistical deconvolution of enthalpic energetic contributions to MHC-peptide binding affinity. BMC Struct. Biol.6, 5 (2006).
  • Hattotuwagama CK, Davies MN, Flower DR. Receptor–ligand binding sites and virtual screening. Curr. Med. Chem.13(11), 1283–1304 (2006).
  • Wodarz D. Mathematical models of HIV and the immune system. Novartis Found. Symp.254, 193–207 (2003).
  • Wodarz D, Hamer DH. Infection dynamics in HIV-specific CD4 T cells: Does a CD4 T cell boost benefit the host or the virus? Math. Biosci.209, 14–29 (2007).
  • Wodarz D, Nowak MA. Mathematical models of HIV pathogenesis and treatment. Bioessays24(12), 1178–1187 (2002).
  • Kesmir C, De Boer RJ. A mathematical model on germinal center kinetics and termination. J. Immunol.163(5), 2463–2469 (1999).
  • Meyer-Hermann M, Deutsch A, Or-Guil M. Recycling probability and dynamical properties of germinal center reactions. J. Theor. Biol.210(3), 265–285 (2001).
  • Rissoan MC, Soumelis V, Kadowaki N et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science283(5405), 1183–1186 (1999).
  • Golding B, Zaitseva M, Golding H. The potential for recruiting immune responses toward type 1 or type 2 T cell help. Am. J. Trop. Med. Hyg.50(4 Suppl.), 33–40 (1994).
  • Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ. Novel aggregate structure adjuvants modulate lymphocyte proliferation and Th1 and Th2 cytokine profiles in ovalbumin immunized mice. Vaccine18(1–2), 140–152 (1999).
  • Barbour EK, Hamadeh SK, Ghanem DA, Haddad JJ, Safieh-Garabedian B. Humoral and cell-mediated immunopotentiation in vaccinated chicken layers by thymic hormones and zinc. Vaccine16(17), 1650–1655 (1998).
  • Ahmed E, Hashish AH. On modeling the immune system as a complex system. Theory Biosci.124(3–4), 413–418 (2006).
  • Bernaschi M, Castiglione F. Selection of escape mutants from immune recognition during HIV infection. Immunol. Cell. Biol.80(3), 307–313 (2002).
  • Morpurgo D, Serentha R, Seiden PE, Celada F. Modelling thymic functions in a cellular automaton. Int. Immunol.7(4), 505–516 (1995).
  • Wolfram S. A New Kind of Science. Wolfram Media (2002).
  • Celada F, Seiden PE. A computer model of cellular interactions in the immune system. Immunol. Today13(2), 56–62 (1992).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.