83
Views
14
CrossRef citations to date
0
Altmetric
Review

Association of genetic polymorphisms and autoimmune Addison’s disease

, , , &
Pages 441-456 | Published online: 10 Jan 2014

References

  • Laureti S, Vecchi L, Santeusanio F, Falorni A. Is the prevalence of Addison’s disease underestimated? J. Clin. Endocrinol. Metab.84, 1762 (1999).
  • Lovas K, Husebye ES. High prevalence and increasing incidence of Addison’s disease in western Norway. Clin. Endocrinol. (Oxf.)56, 787–791 (2002).
  • Oelkers W. Adrenal insufficiency. N. Engl. J. Med.335, 1206–1212 (1996).
  • Betterle C, Dal Pra C, Mantero F, Zanchetta R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev.23, 327–364 (2002).
  • Nomura K, Depura H, Saruta T. Addison’s disease in Japan: characteristics and changes revealed in a nationwide survey. Intern. Med.33, 602–606 (1994).
  • Aubourg P. On the front of X-linked adrenoleukodystrophy. Neurochem. Res.24, 515–520 (1999).
  • McCabe ER. DAX1: increasing complexity in the roles of this novel nuclear receptor. Mol. Cell. Endocrinol.265–266, 179–182 (2007).
  • Achermann JC, Ito M, Ito M, Hindmarsch PC, Jameson JL. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet.22, 125–126 (1999).
  • Clark AJ, McLoughlin L, Grossman A. Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor. Lancet341, 461–462 (1993).
  • Weber A, Wienker TF, Jung M et al. Linkage of the gene for the triple A syndrome to chromosome 12q13 near the type II keratin gene cluster. Hum. Mol. Genet.5, 2061–2066 (1996).
  • North K, Korson MS, Krawiecki N, Shoffner JM, Holm IA. Oxidative phosphorylation defect associated with primary adrenal insufficiency. J. Pediatrics128, 688–692 (1996).
  • Andersson HC, Frentz J, Martínez JE, Tuck-Muller CM, Bellizaire J. Adrenal insufficiency in Smith–Lemli–Opitz syndrome. Am. J. Med. Genet.82, 382–384 (1999).
  • Blizzard RM, Kyle MA. Studies of the adrenal antigens and antibodies in Addison’s disease. J. Clin. Invest.42, 1653–1660 (1963).
  • Sotsiou F, Bottazzo GF, Doniach D. Immunofluorescence studies on autoantibodies to steroid-producing cells and to germline cells in endocrine diseases and infertility. Clin. Exp. Immunol.39, 97–111 (1980).
  • Winqvist O, Karlsson FA, Kämpe O. 21-hydroxylase, a major autoantigen in idiopathic Addison’s disease. Lancet339, 1559–1562 (1992).
  • Bednarek J, Furmaniak J, Wedlock N et al. Steroid 21-hydroxylase is a major autoantigen involved in adult onset autoimmune Addison’s disease. FEBS Lett.309, 51–55 (1992).
  • Furmaniak J, Kominami S, Asawa T, Wedlock N, Colls J, Smith BR. Autoimmune Addison’s disease-evidence for a role of steroid 21-hydroxylase autoantibodies in adrenal insufficiency. J. Clin. Endocrinol. Metab.79, 1517–1521 (1994).
  • Boscaro M, Betterle C, Volpato M et al. Hormonal responses during various phases of autoimmune adrenal failure: no evidence for 21-hydroxylase enzyme activity inhibition in vivo. J. Clin. Endocrinol. Metab.81, 2801–2804 (1996).
  • Laureti S, Candeloro P, Aglietti MC et al. Dehydroepiandrosterone, 17α-hydroxyprogesterone and aldosterone responses to the low-dose (1 µg) ACTH test in subjects with preclinical adrenal autoimmunity. Clin. Endocrinol. (Oxf.)57, 677–683 (2002).
  • Falorni A, Nikoshkov A, Laureti S et al. High diagnostic accuracy for idiopathic Addison’s disease with a sensitive radiobinding assay for autoantibodies against recombinant human 21-hydroxylase. J. Clin. Endocrinol. Metab.80, 2752–2755 (1995).
  • Colls J, Betterle C, Volpato M, Prentice L, Smith BR, Furmaniak J. Immunoprecipitation assay for autoantibodies to steroid 21-hydroxylase in autoimmune adrenal diseases. Clin. Chem.41, 375–380 (1995).
  • Tanaka H, Perez MS, Powell M et al. Steroid 21-hydroxylase autoantibodies: measurements with a new immunoprecipitation assay. J. Clin. Endocrinol. Metab.82, 1440–1446 (1997).
  • Falorni A, Laureti S, Santeusanio F. Autoantibodies in autoimmune polyendocrine syndrome type II. Endocrinol. Metab. Clin. N. Am.31, 369–389 (2002).
  • Falorni A, Laureti S, Nikoshkov A et al. 21-hydroxylase autoantibodies in adult patients with endocrine autoimmune diseases are highly specific for Addison’s disease. Clin. Exper. Immunol.107, 341–345 (1997).
  • Laureti S, Aubourg P, Calcinaro F et al. Etiological diagnosis of primary adrenal insufficiency using an original flow-chart of immune and biochemical markers. J. Clin. Endocrinol. Metab.83, 3163–3168 (1998).
  • Falorni A, Laureti S, De Bellis A et al. Italian Addison Network Study: update of diagnostic criteria for the etiological classification of primary adrenal insufficiency. J. Clin. Endocrinol. Metab.89, 1598–1604 (2004).
  • da Carmo Silva R, Kater CE, Dib SA et al. Autoantibodies against recombinant human steroidogenic enzyme 21-hydroxylase, side-chain cleavage and 17α-hydroxylase in Addison’s disease and autoimmune polyendocrine syndrome type III. Eur. J. Endocrinol.142, 187–194 (2000).
  • Laureti S, De Bellis A, Muccitelli VI et al. Levels of adrenocortical autoantibodies correlate with the degree of adrenal dysfunction in subjects with pre-clinical Addison’s disease. J. Clin. Endocrinol. Metab.83, 3507–3511 (1998).
  • Betterle C, Volpato M, Rees Smith B et al. I. Adrenal cortex and steroid 21-hydroxylase autoantibodies in adult patients with organ-specific autoimmune diseases: markers of low progression to clinical Addison’s disease. J. Clin. Endocrinol. Metab.82, 932–938 (1997).
  • Coco G, Dal Pra C, Presotto F et al. Estimated risk for developing autoimmune Addison’s disease in patients with adrenal cortex autoantibodies. J. Clin. Endocrinol. Metab.91, 1637–1645 (2006).
  • Falorni A, Laureti S. Adrenal autoimmunity and correlation with adrenal dysfunction. Endocrinologist10, 145–154 (2000).
  • Laureti S, Arvat E, Di Vito L et al. Low (1 µg) dose ACTH test in the evaluation of adrenal dysfunction in preclinical Addison’s disease. Clin. Endocrinol. (Oxf.)53, 107–115 (2000).
  • The Finnish–German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet.17, 399–403 (1997).
  • Tuomi T, Björses P, Falorni A et al. Antibodies to glutamic acid decarboxylase and insulin-dependent diabetes in patients with autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab.81, 1488–1494 (1996).
  • Betterle C, Greggio NA, Volpato M. Clinical review 93: autoimmune polyglandular syndrome type 1. J. Clin. Endocrinol. Metab.83, 1049–1055 (1998).
  • Halonen M, Eskelin P, Myhre AG et al.AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy– candidiasis–ectodermal dystrophy phenotype. J. Clin. Endocrinol. Metab.87, 2568–2574 (2002).
  • Robles DT, Fain PR, Eisenbarth GS. The genetics of autoimmune polyendocrine syndrome type II. Endocrinol. Metab. Clin. N. Am.31, 353–368 (2002).
  • Freeman M, Weetman AP. T and B cell reactivity to adrenal antigens in autoimmune Addison’s disease. Clin. Exp. Immunol.88, 275–279 (1992).
  • Hayashi Y, Hiyoshi T, Takemura T, Kurashima C, Hirokawa K. Focal lymphocytic infiltration in the adrenal cortex of the elderly: immunohistological analysis of infiltrating lymphocytes. Clin. Exp. Immunol.77, 101–105 (1989).
  • Nerup J, Andersen V, Bendixen G. Anti-adrenal, cellular hypersensitivity in Addison’s disease. Clin. Exp. Immunol.4, 355–363 (1969).
  • Nerup J, Andersen V, Bendixen G. Anti-adrenal, cellular hypersensitivity in Addison’s disease. IV. In vivo and in vitro investigations on the mitochondrial fraction. Clin. Exp. Immunol.6, 733–739 (1970).
  • Rabinowe SL, Jackson RA, Dluhy RG, Williams GH. Ia-positive T lymphocytes in recently diagnosed idiopathic Addison’s disease. Am. J. Med.77, 597–601 (1984).
  • Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz HM. Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J. Exp. Med.199, 1285–1291 (2004).
  • Husebye ES, Bratland E, Bredholt G, Fridkin M, Dayan M, Mozes E. The substrate-binding domain of 21-hydroxylase, the main autoantigen in autoimmune Addison’s disease, is an immunodminant T cell epitope. Endocrinology147, 2411–2416 (2006).
  • Peterson P, Pitkänen J, Sillanpää N, Krohn K. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a model disease to study molecular aspects of endocrine autoimmunity. Clin. Exp. Immunol.135, 348–357 (2004).
  • Pitkänen J, Vähämurto P, Krohn K et al. Subcellular localization of the autoimmune regulator protein. Characterization of nuclear targeting and transcriptional activation domain. J. Biol. Chem.276, 19597–19602 (2001).
  • Björses P, Halonen M, Palvimo JJ et al. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy–candidiasis– ectodermal dystrophy protein. Am. J. Hum. Genet.66, 378–392 (2000).
  • Pitkänen J, Doucas V, Sternsdorf T et al. The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J. Biol. Chem.275, 16802–16809 (2000).
  • Ramsey C, Bukrinsky A, Peltonen L. Systematic mutagenesis of the functional domains of AIRE reveals their role in intracellular targeting. Hum. Mol. Genet.11, 3299–3308 (2002).
  • Bottomley MJ, Collard MW, Huggenvik JI et al. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat. Struct. Biol.8, 626–33 (2001).
  • Söderbergh A, Rorsman F, Halonen M et al. Autoantibodies against aromatic l-amino acid decarboxylase identifies a subgroup of patients with Addison’s disease. J. Clin. Endocrinol. Metab.85, 460–463 (2000).
  • Vaidya B, Imrie H, Geatch DR et al. Association analysis of the cytotoxic T lymphocyte antigen-4 (CTLA-4) and autoimmune regulator-1 (AIRE-1) genes in sporadic autoimmune Addison’s disease. J. Clin. Endocrinol. Metab.85, 688–691 (2000).
  • Bøe Wolff AS, Oftedal B, Johansson S et al.AIRE variations in Addison’s disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I. Genes Immun.9, 130–136 (2008).
  • Ramsey C, Winqvist O, Puhakka L et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet.11, 397–409 (2002).
  • Anderson MS, Venanzi ES, Klein L et al. Projection of an immunological self shadow within the thymus by the aire protein. Science298, 1395–1401 (2002).
  • Thomsen M, Platz P, Andersen OO et al. MLC typing in juvenile diabetes mellitus and idiopathic Addison’s disease. Transplant. Rev.22, 125–147 (1975).
  • Eisenbarth G, Wilson P, Ward F, Lebovitz HE. HLA type and occurrence of disease in familial polyglandular failure. N. Engl. J. Med.298, 92–94 (1978).
  • Eisenbarth GS, Wilson PW, Ward F, Buckley C, Lebovita H. The polyglandular failure syndrome: disease inheritance, HLA type, and immune function. Ann. Intern. Med.91, 528–533 (1979).
  • Valenta LJ, Bull RW, Hackel E, Bottazzo GF. Correlation of the HLA-A1, B8 haplotypes with circulating autoantibodies in a family with increased incidence of autoimmune disease. Acta Endocrinol. (Copenh.)100, 143–149 (1982).
  • Butler MG, Hodes ME, Conneally PM, Biegel AA, Wright JC. Linkage analysis in a large kindred with autosomal dominant transmission of polyglandular autoimmune disease type II (Schmidt syndrome). Am. J. Med. Genet.18, 61–65 (1984).
  • Maclaren NK, Riley WJ. Inherited susceptibility to autoimmune Addison’s disease is linked to human leukocyte antigens-DR3 and/or DR4, except when associated with type I autoimmune polyglandular syndrome. J. Clin. Endocrinol. Metab.62, 455–459 (1986).
  • Latinne D, Vandeput Y, De Bruyere M, Bottazzo F, Sokal G, Crabbe J. Addison’s disease: immunological aspects. Tissue Antigens30, 23–24 (1987).
  • Boehm BO, Manfras B, Seidl S et al. The HLA-DQ β non-Asp-57 allele: a predictor of future insulin-dependent diabetes mellitus in patients with autoimmune Addison’s disease. Tissue Antigens37, 130–132 (1991).
  • Weetman AP, Zhang L, Tandon N, Edwards OM. HLA associations with autoimmune Addison’s disease. Tissue Antigens38, 31–33 (1991).
  • Partanen J, Peterson P, Westman P, Aranko S, Krohn K. Major histocompatibility complex class II and III in Addison’s disease. MHC alleles do not predict autoantibody specificity and 21--hydroxylase gene polymorphism has no independent role in disease susceptibility. Hum. Immunol.41, 135–140 (1994).
  • Badenhoop K, Walfish PG, Rau H et al. Susceptibility and resistance alleles of human leukocyte antigen (HLA) DQA1 and HLA DQB1 are shared in endocrine autoimmune disease. J. Clin. Endocrinol. Metab.80, 2112–2117 (1995).
  • Betterle C, Volpato M, Rees Smith B et al. I. Adrenal cortex and steroid 21-hydroxylase autoantibodies in adult patients with organ-specific autoimmune diseases: markers of low progression to clinical Addison’s disease. J. Clin. Endocrinol. Metab.82, 932–938 (1997).
  • Yu L, Brewer KW, Gates S et al.DRB1*04 and DQ alleles: expression of 21-hydroxylase autoantibodies and risk of progression to Addison’s disease. J. Clin. Endocrinol. Metab.84, 328–335 (1999).
  • Gambelunghe G, Falorni A, Ghaderi M et al. Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison’s disease. J.Clin. Endocrinol. Metab.84, 3701–3707 (1999).
  • Myhre AG, Undlien DE, Løvås K et al. Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features. J. Clin. Endocrinol. Metab.87, 618–623 (2002).
  • Wallaschofski H, Meyer A, Tuschy U, Lohmann T. HLA-DQA1*0301-associated susceptibility for autoimmune polyglandular syndrome type II and III. Horm. Metab. Res.35, 120–124 (2003).
  • Gambelunghe G, Kockum I, Bini V et al. Retrovirus-like long terminal repeat DQ-LTR13 and genetic susceptibility to type 1 diabetes mellitus and autoimmune Addison’s disease. Diabetes54, 900–905 (2005).
  • Barker JM, Ide A, Hostetler C et al. Endocrine and immunogenetic testing in individuals with type 1 diabetes and 21-hydroxylase autoantibodies: Addison’s disease in a high-risk population. J. Clin. Endocrinol. Metab.90, 128–134 (2005).
  • Gombos Z, Hermann R, Kiviniemi M et al. Analysis of extended human leukocyte antigen haplotype association with Addison’s disease in three populations. Eur. J. Endocrinol.157, 757–761 (2007).
  • Michelsen B, Lernmark Å. Molecular cloning of a polymorphic DNA endonuclease fragment associates insulin-dependent diabetes mellitus with HLA-DQ. J. Clin. Invest.79, 1144–1152 (1987).
  • Chase K, Sargan D, Miller K, Ostrander EA, Lark KG. Understanding the genetics of autoimmune disease: two loci that regulate late onset Addison’s disease in Portuguese Water Dogs. Int. J. Immunogenet.33, 179–184 (2006).
  • Rønningen KS, Keiding N, Green A, EURODIAB ACE Study Group. Correlations between the incidence of childhood-onset Type I diabetes in Europe and HLA genotypes. Diabetologia44(Suppl. 3), B51–B59 (2001).
  • Jackson R, McNicol AM, Farquharson M, Foulis AK. Class II MHC expression in normal adrenal cortex and cortical cells in autoimmune Addison’s disease. J. Pathol.155, 113–120 (1988).
  • Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).
  • Leib-Mösch C, Haltmeier M, Werner T et al. Genomic distribution and transcription of solitary HERV-K LTRs. Genomics18, 261–269 (1993).
  • Kambhu S, Falldorf P, Lee JS. Endogenous retroviral long terminal repeats within the HLA-DQ locus. Proc. Natl Acad. Sci. USA87, 4927–4931 (1990).
  • Donner H, Tönjes RR, Van der Auwera B et al. The presence or absence of a retroviral long terminal repeat influences the genetic risk for Type 1 diabetes conferred by human leukocyte antigen DQ haplotypes. J. Clin. Endocrinol. Metab.84, 1404–1408 (1999).
  • Pascual M, Martin J, Nieto A et al. Distribution of HERV-LTR elements in the 5´-flanking region of HLA-DQB1 and association with autoimmunity. Immunogenetics53, 114–118 (2001).
  • Pani MA, Seidl C, Bieda K et al. Preliminary evidence that an endogenous retroviral long-terminal repeat (LTR13) at the HLA-DQB1 gene locus confers susceptibility to Addison’s disease. Clin. Endocrinol. (Oxf.)56, 773–777 (2002).
  • Donner H, Tönjes RR, Bontrop RE, Kurth R, Usadel KH, Badenhoop K. MHC diversity in Caucasians, investigated using highly heterogeneous noncoding sequence motifs at the DQB1 locus including a retroviral long terminal repeat element, and its comparison to nonhuman primate homologues. Immunogenetics51, 898–904 (2000).
  • Bieda K, Pani MA, Van der Auwera B et al. A retroviral long terminal repeat adjacent to the HLA DQB1 gene (DQ-LTR13) modifies Type I diabetes susceptibility on high risk DQ haplotypes. Diabetologia45, 443–447 (2002).
  • Krach K, Badenhoop K, Tönjes RR. The IDDM-associated solitary retroviral promoters DQ-LTR3 and DQ-LTR13 have a distinct impact on the expression of selected DQB1 genes in different cell lines in vitro.Immunogenetics55, 521–529 (2003).
  • Reichstetter S, Krellner PH, Meenzen CM, Kalden JR, Wassmuth R. Comparative analysis of sequence variability in the upstream regulatory region of the HLA-DQB1 gene. Immunogenetics39, 207–212 (1994).
  • Bahram S. Mizuki N, Inoko H, Spies T. Nucleotide sequence of a human MHC class I MICA gene. Immunogenetics44, 80–81 (1996).
  • Bahram S. MIC genes: from genetics to biology. Adv. Immunol.76, 1–60 (2000).
  • Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Co-stimulation of CDαβ T cells via engagement by MIC induced on virus-infected cells. Nat. Immun.2, 255–260 (2001).
  • Yamamoto K, Fujiyama Y, Andoh A, Bamba T, Okabe H. Oxidative stress increases MICA and MICB gene expression in the human colon carcinoma cell line. Biochem. Biophys. Acta1526, 10–12 (2001).
  • Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science279, 1737–1740 (1998).
  • Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumour associated expression and recognition by tumour-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA96, 6879–6884 (1999).
  • Zwirner NW, Fernandez-Miña MA, Stastny P. MICA, a new polymorphic HLA related antigen, is expressed mainly by keratinocytes, endothelial cells and monocytes. Immunogenetics47, 139–148 (1998).
  • Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA93, 12445–12450 (1996).
  • Bauer S, Groh V, Wu J et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285, 727–729 (1999).
  • Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat. Immunol.2, 443–451 (2001).
  • Ota M, Katsuyama Y, Mizuki N et al. Trinucleotide repeat polymorphism within exon 5 of the MICA gene (MHC class I chain-related gene A): allele frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kazakhstan, Iranian, Saudi Arabian, Greek and Italian. Tissue Antigens49, 448–454 (1997).
  • Fodil N, Laloux N, Wanner P et al. Allelic repertoire of the human MHC class I MICA gene. Immunogenetics44, 351–357 (1996).
  • Ricci Vitiani L, Potolicchio I, D’Amato M, Baricordi OR, Sorrentino R. MICA exon 5 microsatellite typing by DNA heteroduplex analysis: a new polymorphism in the transmembrane region. Tissue Antigens51, 309–311 (1998).
  • Perez-Rodriguez M, Corell A, Arguello JR et al. A new MICA allele with ten alanine residues in the exon 5 microsatellite. Tissue Antigens55, 162–165 (2000).
  • Rueda B, Pascual M, López-Nevot MA, González E, Martín J. A new allele within the transmembrane region of the human MICA gene with seven GCT repeats. Tissue Antigens60, 526–528 (2002).
  • Gambelunghe G, Brozzetti A, Ghaderi M, Tortoioli C, Falorni A. MICA8: a new allele within MHC class I chain-related A transmembrane region with eight GCT repeats. Hum. Immunol.67, 1005–1007 (2006).
  • Park YS, Sanjeevi CB, Robles D et al. Additional association of intra-MHC genes, MICA and D6S273, with Addison’s disease. Tissue Antigens60, 155–163 (2002).
  • LeibundGut-Landmann S, Waldburger JM, Krawczyk M et al. Specificity and expression of CIITA, the master regulator of MHC class II genes. Eur. J. Immunol.34, 1513–1525 (2004).
  • Harton JA, Ting JP. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol. Cell. Biol.20, 6185–6194 (2000).
  • Ting JP, Trowsdale J. Genetic control of MHC class II expression. Cell109, S21–S33 (2002).
  • Patarroyo JC, Stuve O, Piskurich JF, Hauser SL, Oksenberg JR, Zamvil SS. Single nucleotide polymoprhisms in MHC2TA, the gene encoding the MHC class II transactivator (CIITA). Genes Immun.3, 34–37 (2002).
  • Koizumi K, Okamoto H, Iikuni N et al. Single nucleotide polymoprhisms in the gene encoding the major histocompatibility complex class II transactivator (CIITA) in systemic lupus erythematosus. Ann. Rheum. Dis.64, 947–950 (2006).
  • Swanberg M, Lidman O, Padyukov L et al.MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat. Genet.37, 486–494 (2005).
  • Rassmussen HB, Kelly MA, Clausen J. Genetic susceptibility to multiple sclerosis: detection of polymorphic nucleotides and an intron in the 3´ untranslated region of the major histocompatibility complex class II transactivator gene. Hum. Immunol.62, 371–377 (2001).
  • Sartoris S, Brendolan A, Degola A et al. Analysis of CIITA encoding AIR-1 gene promoters in insulin-dependent diabetes mellitus and rheumatoid arthritis patients from the northeast of Italy: absence of sequence variability. Hum. Immunol.61, 599–604 (2000).
  • Akkad DA, Jagiello P, Szyld P et al. Promoter polymorphism rs3087456 in the MHC class II transactivator gene is not associated with susceptibility for selected autoimmune diseases in German patient groups. Int. J. Immunogenet.33, 59–61 (2006).
  • Yazdani-Biuki B, Brickmann K, Wohlfahrt K et al. The MHC2TA -168A>G gene polymorphism is not associated with rheumatoid arthritis in Austrian patients. Arthritis Res. Ther.8(4), R97 (2006).
  • Linga-Reddy MV, Gunnarsson I, Svenungsson E et al. A polymorphic variant in the MHC2TA gene is not associated with systemic lupus erythematosus. Tissue Antigens70, 412–414 (2007).
  • Ghaderi M, Gambelunghe G, Tortoioli C et al.MHC2TA single nucleotide polymorphism and genetic risk for autoimmune adrenal insufficiency. J. Clin. Endocrinol. Metab.91, 4107–4111 (2006).
  • Grohmann U, Orabona C, Fallarino F et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunol.3, 1097–1101 (2002).
  • Vaidya B, Pearce S. The emerging role of the CTLA-4 gene in autoimmune endocrinopathies. Eur. J. Endocrinol.150, 619–626 (2004).
  • Donner H, Braun J, Seidl C et al. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto’s thyroiditis and Addison’s disease. J. Clin. Endocrinol. Metab.82, 4130–4132 (1997).
  • Kemp EH, Ajjan RA, Husebye ES et al. A cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism is associated with autoimmune Addison’s disease in English patients. Clin. Endocrinol.49, 609–613 (1998).
  • Pani MA, Seissler J, Usadel KH, Badenhoop K. Vitamin D receptor genotype is associated with Addison’s disease. Eur. J. Endocrinol.147, 635–640 (2002).
  • Lopez ER, Zwermann O, Segni M et al. A promoter polymorphism of the CYP27B1 gene is associated with Addison’s disease, Hashimoto’s thyroiditis, Graves’ disease and Type 1 diabetes mellitus in Germans. Eur. J. Endocrinol.151, 193–197 (2004).
  • Smith MW, Carrington M, Winkler C et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science277, 959–965 (1997).
  • Horuk R. Chemokine receptors. Cytokine Growth Factor Rev.12, 313–335 (2001).
  • Gambelunghe G, Ghaderi M, Brozzetti A et al.CCR2-64I and CCR5-Δ32 are not associated with autoimmune Addison’s disease. Eur. J. Immunogenet.31, 73–76 (2004).
  • Fischereder M, Luckow B, Hocher B et al. CC chemokine receptor 5 and renal-transplant survival. Lancet357, 1758–1761 (2001).
  • Garred P, Madsen HO, Petersen J et al. CC chemokine receptor 5 polymorphism in rheumatoid artrhritis. J. Rheumatol.25, 1462–1465 (1998).
  • Hall IP, Wheatley A, Christie G, McDougall C, Hubbard R, Helms PJ. Association of CCR5 δ 32 with reduced risk of asthma. Lancet354, 1264–1265 (1999).
  • Velaga MR, Wilson V, Jennings CE et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J. Clin. Endocrinol. Metab.89, 5862–5865 (2004).
  • Kahles H, Ramos-Lopez E, Lange B, Zwermann O, Reincke M, Badenhoop K. Sex-specific association of PTPN22 1858T with Type 1 diabetes but not with Hashimoto’s thyroiditis or Addison’s disease in the German population. Eur. J. Endocrinol.153, 895–899 (2005).
  • Skinningsrud B, Husebye ES, Gervin K et al. Mutation screening of PTPN22: association of the 1858T-allele with Addison’s disease. Eur. J. Hum. Genet. DOI: 10.1038/ejhg.2008.33 (2008) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.