42
Views
5
CrossRef citations to date
0
Altmetric
Reviews

The principles of wound healing

&
Pages 639-658 | Published online: 10 Jan 2014

References

  • Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic. Sci. Int. 203(1–3), 93–98 (2010).
  • Lorenz HP, Longaker MT. Essential Practice of Surgery: Wounds: Biology, Pathology, and Management. Springer, New York, NY, USA (2003).
  • Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci. 9, 283–289 (2004).
  • Ishida Y, Kondo T, Kimura A, Matsushima K, Mukaida N. Absence of IL-1 receptor antagonist impaired wound healing along with aberrant NF-kappaB activation and a reciprocal suppression of TGF-beta signal pathway. J. Immunol. 176(9), 5598–5606 (2006).
  • Schiro JA, Chan BM, Roswit WT et al. Integrin alpha 2 beta 1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 67(2), 403–410 (1991).
  • Langholz O, Rockel D, Mauch C et al. Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J. Cell Biol. 131(6 Pt 2), 1903–1915 (1995.).
  • Eckes B, Zweers MC, Zhang ZG et al. Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J. Investig. Dermatol. Symp. Proc. 11(1), 66–72 (2006).
  • Wang Z, Fong KD, Phan TT, Lim IJ, Longaker MT, Yang GP. Increased transcriptional response to mechanical strain in keloid fibroblasts due to increased focal adhesion complex formation. J. Cell. Physiol. 206(2), 510–517 (2006).
  • Huang C, Akaishi S, Ogawa R. Mechanosignaling pathways in cutaneous scarring. Arch. Dermatol. Res. 304(8), 589–597 (2012).
  • Occleston NL, O'Kane S, Laverty HG et al. Discovery and development of avotermin (recombinant human transforming growth factor beta 3): a new class of prophylactic therapeutic for the improvement of scarring. Wound Repair Regen. 19( Suppl. 1), s38–s48 (2011).
  • Ohno S, Hirano S, Kanemaru S et al. Prevention of buccal mucosa scarring with transforming growth factor beta3. Laryngoscope 121(7), 1404–1409 (2011).
  • Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 108(Pt 3), 985–1002 (1995).
  • Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249), 996–999 (2009).
  • Yoo SK, Starnes TW, Deng Q, Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375), 109–112 (2011).
  • Guo S, Dipietro LA. Factors affecting wound healing. J. Dent. Res. 89(3), 219–229 (2010).
  • Artuc M, Steckelings UM, Henz BM. Mast cell-fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors. J. Invest. Dermatol. 118(3), 391–395 (2002).
  • Ishida Y, Gao JL, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J. Immunol. 180(1), 569–579 (2008).
  • Ishida Y, Kimura A, Kuninaka Y et al. Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J. Clin. Invest. 122(2), 711–721 (2012).
  • Schreml S, Szeimies RM, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J. Am. Acad. Dermatol. 63(5), 866–881 (2010).
  • Yukami T, Hasegawa M, Matsushita Y et al. Endothelial selectins regulate skin wound healing in cooperation with L-selectin and ICAM-1. J. Leukoc. Biol. 82(3), 519–531 (2007).
  • Nagaoka T, Kaburagi Y, Hamaguchi Y et al. Delayed wound healing in the absence of intercellular adhesion molecule-1 or L-selectin expression. Am. J. Pathol. 157(1), 237–247 (2000).
  • Tomita H, Iwata Y, Ogawa F et al. P-selectin glycoprotein ligand-1 contributes to wound healing predominantly as a p-selectin ligand and partly as an e-selectin ligand. J. Invest. Dermatol. 129(8), 2059–2067 (2009).
  • Reddy BY, Jow T, Hantash BM. Bioactive oligopeptides in dermatology: Part II. Exp. Dermatol. 21(8), 569–575 (2012).
  • Zheng Y, Niyonsaba F, Ushio H et al. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br. J. Dermatol. 157(6), 1124–1131 (2007).
  • Hoq MI, Niyonsaba F, Ushio H, Aung G, Okumura K, Ogawa H. Human catestatin enhances migration and proliferation of normal human epidermal keratinocytes. J. Dermatol. Sci. 64(2), 108–118 (2011).
  • Macedo L, Pinhal-Enfield G, Alshits V, Elson G, Cronstein BN, Leibovich SJ. Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am. J. Pathol. 171(6), 1774–1788 (2007).
  • De Falco E, Porcelli D, Torella AR et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104(12), 3472–3482 (2004).
  • Asai J, Takenaka H, Kusano KF et al. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113(20), 2413–2424 (2006).
  • Ekstrand AJ, Cao R, Bjorndahl M et al. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc. Natl Acad. Sci. USA 100(10), 6033–6038 (2003).
  • Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J. Invest. Dermatol. 132(2), 458–465 (2012).
  • Saito S, Takayama Y, Mizumachi K, Suzuki C. Lactoferrin promotes hyaluronan synthesis in human dermal fibroblasts. Biotechnol Lett. 33(1), 33–39 (2011).
  • Diegelmann RF. Cellular and biochemical aspects of normal and abnormal wound healing: an overview. J. Urol. 157(1), 298–302 (1997).
  • Watterson KR, Lanning DA, Diegelmann RF, Spiegel S. Regulation of fibroblast functions by lysophospholipid mediators: potential roles in wound healing. Wound Repair Regen. 15(5), 607–616 (2007).
  • Chavez-Munoz C, Hartwell R, Jalili RB et al. SPARC/SFN interaction, suppresses type I collagen in dermal fibroblasts. J. Cell Biochem. 113(8), 2622–2632 (2012).
  • Workman G, Sage EH. Identification of a sequence in the matricellular protein SPARC that interacts with the scavenger receptor stabilin-1. J. Cell Biochem. 112(4), 1003–1008 (2011).
  • Bamberger C, Hafner A, Schmale H, Werner S. Expression of different p63 variants in healing skin wounds suggests a role of p63 in reepithelialization and muscle repair. Wound Repair Regen. 13(1), 41–50 (2005).
  • Ichikawa T, Suenaga Y, Koda T, Ozaki T, Nakagawara A. DeltaNp63/BMP-7-dependent expression of matrilin-2 is involved in keratinocyte migration in response to wounding. Biochem. Biophys. Res. Commun. 369(4), 994–1000 (2008).
  • Zhang M, Liu NY, Wang XE et al. Activin B promotes epithelial wound healing in vivo through RhoA-JNK signaling pathway. PLoS ONE 6(9), e25143 (2011).
  • Sarrazy V, Billet F, Micallef L, Coulomb B, Desmouliere A. Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen. 19( Suppl. 1), s10–s15 (2011).
  • Aarabi S, Bhatt KA, Shi Y et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 21(12), 3250–3261 (2007).
  • Gurtner GC, Dauskardt RH, Wong VW et al. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann. Surg. 254(2), 217–225 (2011).
  • Kippenberger S, Bernd A, Loitsch S et al. Signaling of mechanical stretch in human keratinocytes via MAP kinases. J. Invest. Dermatol. 114(3), 408–412 (2000).
  • Yano S, Komine M, Fujimoto M, Okochi H, Tamaki K. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J. Invest. Dermatol. 122(3), 783–790 (2004).
  • Connelly JT, Gautrot JE, Trappmann B et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12(7), 711–718 (2010).
  • Evans ND, Oreffo RO, Healy E, Thurner PJ, Man YH. Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. doi:10.1016/j.jmbbm.2013.04.023 (2013) ( Epub ahead of print).
  • Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp. Cell Res. 304(1), 274–286 (2005).
  • Nikolopoulos SN, Blaikie P, Yoshioka T et al. Targeted deletion of the integrin beta4 signaling domain suppresses laminin-5-dependent nuclear entry of mitogen-activated protein kinases and NF-kappaB, causing defects in epidermal growth and migration. Mol. Cell Biol. 25(14), 6090–6102 (2005).
  • Echtermeyer F, Streit M, Wilcox-Adelman S et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest. 107(2), R9–R14 (2001).
  • Inada R, Matsuki M, Yamada K et al. Facilitated wound healing by activation of the Transglutaminase 1 gene. Am. J. Pathol. 157(6), 1875–1882 (2000).
  • Lin MP, Marti GP, Dieb R et al. Delivery of plasmid DNA expression vector for keratinocyte growth factor-1 using electroporation to improve cutaneous wound healing in a septic rat model. Wound Repair Regen. 14(5), 618–624 (2006).
  • Gendronneau G, Sidhu SS, Delacour D et al. Galectin-7 in the control of epidermal homeostasis after injury. Mol. Biol. Cell 19(12), 5541–5549 (2008).
  • Cao Z, Said N, Amin S et al. Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J. Biol. Chem. 277(44), 42299–42305 (2002).
  • Mustoe TA, Cooter RD, Gold MH et al. International clinical recommendations on scar management. Plast. Reconstr, Surg. 110(2), 560–571 (2002).
  • Stroncek JD, Reichert WM. Overview of wound healing in different tissue types. In: Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment. Reichert WM ( Ed.). CRC Press, Boca Raton, FL, USA (2008).
  • Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J. Am. Acad. Dermatol. 58(2), 185–206 (2008).
  • Illman SA, Lohi J, Keski-Oja J. Epilysin (MMP-28)--structure, expression and potential functions. Exp. Dermatol. 17(11), 897–907 (2008).
  • Illman SA, Lehti K, Keski-Oja J, Lohi J. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J. Cell Sci. 119(Pt 18), 3856–3865 (2006).
  • Rayment EA, Upton Z, Shooter GK. Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. Br. J. Dermatol. 158(5), 951–961 (2008).
  • Han YP, Yan C, Garner WL. Proteolytic activation of matrix metalloproteinase-9 in skin wound healing is inhibited by alpha-1-antichymotrypsin. J. Invest. Dermatol. 128(9), 2334–2342 (2008).
  • Jansen PL, Rosch R, Jansen M et al. Regulation of MMP-2 gene transcription in dermal wounds. J. Invest. Dermatol. 127(7), 1762–1767 (2007).
  • Heiskanen TJ, Illman SA, Lohi J, Keski-Oja J. Epilysin (MMP-28) is deposited to the basolateral extracellular matrix of epithelial cells. Matrix Biol. 28(2), 74–83 (2009).
  • Swingler TE, Kevorkian L, Culley KL et al. MMP28 gene expression is regulated by Sp1 transcription factor acetylation. Biochem. J. 427(3), 391–400 (2010).
  • Wolfram D, Tzankov A, Pulzl P, Piza-Katzer H. Hypertrophic scars and keloids--a review of their pathophysiology, risk factors, and therapeutic management. Dermatol. Surg. 35(2), 171–181 (2009).
  • Oliveira GV, Hawkins HK, Chinkes D et al. Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens. Int. Wound J. 6(6), 445–452 (2009).
  • Qiu L, Jin XQ, Xiang DL, Fu YX, Tian XF. [Study on the collagen constitution of hyperplastic scar in different ages and its influencing factors]. Zhonghua Shao Shang Za Zhi. 19(4), 236–240 (2003).
  • Friedman DW, Boyd CD, Mackenzie JW, Norton P, Olson RM, Deak SB. Regulation of collagen gene expression in keloids and hypertrophic scars. J. Surg. Res. 55(2), 214–222 (1993).
  • Wankell M, Munz B, Hubner G et al. Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J. 20(19), 5361–5372 (2001).
  • Ong CT, Khoo YT, Mukhopadhyay A et al. mTOR as a potential therapeutic target for treatment of keloids and excessive scars. Exp. Dermatol. 16(5), 394–404 (2007).
  • Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin. Dermatol. 25(1), 19–25 (2007).
  • Menke MN, Menke NB, Boardman CH, Diegelmann RF. Biologic therapeutics and molecular profiling to optimize wound healing. Gynecol. Oncol. 111( 2 Suppl.), S87–91 (2008).
  • Widgerow AD. Chronic wound fluid--thinking outside the box. Wound Repair Regen. 19(3), 287–291 (2011).
  • Ladwig GP, Robson MC, Liu R, Kuhn MA, Muir DF, Schultz GS. Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen. 10(1), 26–37 (2002).
  • Conway K, Ruge F, Price P, Harding KG, Jiang WG. Hepatocyte growth factor regulation: an integral part of why wounds become chronic. Wound Repair Regen. 15(5), 683–692 (2007).
  • Chmielowiec J, Borowiak M, Morkel M et al. c-Met is essential for wound healing in the skin. J. Cell Biol. 177(1), 151–162 (2007).
  • Zamboni P, De Mattei M, Ongaro A et al. Factor XIII contrasts the effects of metalloproteinases in human dermal fibroblast cultured cells. Vasc. Endovascular Surg. 38(5), 431–438 (2004).
  • Gemmati D, Tognazzo S, Catozzi L et al. Influence of gene polymorphisms in ulcer healing process after superficial venous surgery. J. Vasc. Surg. 44(3), 554–562 (2006).
  • Gemmati D, Tognazzo S, Serino ML et al. Factor XIII V34L polymorphism modulates the risk of chronic venous leg ulcer progression and extension. Wound Repair Regen. 12(5), 512–517 (2004).
  • Heilborn JD, Nilsson MF, Kratz G et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol. 120(3), 379–389 (2003).
  • Yamasaki K, Schauber J, Coda A et al. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J. 20(12), 2068–2080 (2006).
  • Morizane S, Yamasaki K, Kabigting FD, Gallo RL. Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. J. Invest. Dermatol. 130(5), 1297–1306 (2010).
  • Morizane S, Yamasaki K, Kajita A et al. TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis. J. Allergy Clin. Immunol. 130(1), 259–261 (2012) e1.
  • Seitz O, Schurmann C, Hermes N et al. Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: a comparative study. Exp. Diabetes Res. 2010, 476969 (2010).
  • Huijberts MS, Schaper NC, Schalkwijk CG. Advanced glycation end products and diabetic foot disease. Diabetes Metab. Res. Rev. 24( Suppl. 1), S19–S24 (2008).
  • Niu YW, Miao MY, Dong W, Dong JY, Cao XZ, Lu SL. [Effects of advanced glycation end products and its receptor on oxidative stress in diabetic wounds]. Zhonghua Shao Shang Za Zhi. 28(1), 32–35 (2012).
  • Frank S, Stallmeyer B, Kampfer H, Kolb N, Pfeilschifter J. Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J. Clin. Invest. 106(4), 501–509 (2000).
  • Frank S, Heni M, Moss A et al. Leptin therapy in a congenital leptin-deficient patient leads to acute and long-term changes in homeostatic, reward, and food-related brain areas. J. Clin. Endocrinol. Metab. 96(8), E1283–1287 (2011).
  • Ubbink DT, Westerbos SJ, Nelson EA, Vermeulen H. A systematic review of topical negative pressure therapy for acute and chronic wounds. Br. J. Surg. 95(6), 685–692 (2008).
  • Ubbink DT, Westerbos SJ, Evans D, Land L, Vermeulen H. Topical negative pressure for treating chronic wounds. Cochrane Database Syst. Rev. (3), CD001898 (2008).
  • Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst. Rev. (4), CD004123 (2012).
  • Bhol KC, Schechter PJ. Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br. J. Dermatol. 152(6), 1235–1242 (2005).
  • Murphy PS, Evans GR. Advances in wound healing: a review of current wound healing products. Plast. Surg. Int. 2012, 190436 (2012).
  • Steinstraesser L, Koehler T, Jacobsen F et al. Host defense peptides in wound healing. Mol. Med. 14(7–8), 528–537 (2008).
  • Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J. Vasc. Surg. 21(1), 71–78, discussion 79–81 (1995).
  • Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast. Reconstr. Surg. 117( 7 Suppl.), 143S–149S; discussion 150S–151S (2006).
  • Branski LK, Pereira CT, Herndon DN, Jeschke MG. Gene therapy in wound healing: present status and future directions. Gene Ther. 14(1), 1–10 (2007).
  • Hardwicke J, Schmaljohann D, Boyce D, Thomas D. Epidermal growth factor therapy and wound healing--past, present and future perspectives. Surgeon 6(3), 172–177 (2008).
  • Falanga V, Eaglstein WH, Bucalo B, Katz MH, Harris B, Carson P. Topical use of human recombinant epidermal growth factor (h-EGF) in venous ulcers. J. Dermatol. Surg. Oncol. 18(7), 604–606 (1992).
  • Vranckx JJ, Hoeller D, Velander PE et al. Cell suspension cultures of allogenic keratinocytes are efficient carriers for ex vivo gene transfer and accelerate the healing of full-thickness skin wounds by overexpression of human epidermal growth factor. Wound Repair Regen. 15(5), 657–664 (2007).
  • Nanney LB, Woodrell CD, Greives MR et al. Calreticulin enhances porcine wound repair by diverse biological effects. Am. J. Pathol. 173(3), 610–630 (2008).
  • Sclafani AP, McCormick SA. Induction of dermal collagenesis, angiogenesis, and adipogenesis in human skin by injection of platelet-rich fibrin matrix. Arch. Facial Plast. Surg. 14(2), 132–136 (2012).
  • Hom DB, Linzie BM, Huang TC. The healing effects of autologous platelet gel on acute human skin wounds. Arch. Facial Plast. Surg. 9(3), 174–183 (2007).
  • Foulds IS, Barker AT. Human skin battery potentials and their possible role in wound healing. Br. J. Dermatol. 109(5), 515–522 (1983).
  • Li Q, Kao H, Matros E, Peng C, Murphy GF, Guo L. Pulsed radiofrequency energy accelerates wound healing in diabetic mice. Plast. Reconstr. Surg. 127(6), 2255–2262 (2011).
  • Qureshi AA, Ross KM, Ogawa R, Orgill DP. Shock wave therapy in wound healing. Plast. Reconstr. Surg. 128(6), 721e–727e (2011).
  • Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 97(2–3), 163–179 (2008).
  • Wu Y, Huang S, Enhe J, Fu X. Insights into bone marrow-derived mesenchymal stem cells safety for cutaneous repair and regeneration. Int. Wound J. 9(6), 586–594 (2012).
  • Paunescu V, Deak E, Herman D et al. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J. Cell Mol. Med. 11(3), 502–508 (2007).
  • Fathke C, Wilson L, Hutter J et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22(5), 812–822 (2004).
  • Hong HS, Lee J, Lee E et al. A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat. Med. 15(4), 425–435 (2009).
  • Hong HS, Kim do Y, Yoon KJ, Son Y. A new paradigm for stem cell therapy: substance-P as a stem cell-stimulating agent. Arch. Pharm. Res. 34(12), 2003–2006 (2011).
  • Hess CT. Clinical Guide to Skin & Wound Care (7th Edition). Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA, USA (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.